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Abstract

When Sun Microsystems developed their Java Platform in the early 1990s, it
was originally designed for use in networked and embedded consumer-electronics
applications. But when they introduced it around 1995, it quickly became used
in World Wide Web browser software. This was a way to bring interactive
content to demanding World Wide Web users. Sun took great care for the
robustness of the platform: they planned to connect embedded devices and let
them share data and code over a network. Defective devices transmitting bad
data or unreliable network connections should not cause other devices to crash.
This property made Java a good choice for the code-executing engine in World
Wide Web browsers: defective server software or transmission errors would not
cause the Java Platform to crash; this is also true for purposely malicious code
hidden on the Web. The code-executing part of the Java Platform is called
The Java Virtual Machine (the JVM, for short). This execution engine has to
assure that the code to be executed is well-behaved; it has to verify the code.
Therefore, the verifier is an integral part of every JVM, but JustIce implements
a verifier that is not integrated in a JVM. It was implemented using a software
library called the Byte Code Engineering Library (the BCEL, for short) by
Markus Dahm [BCEL98, BCEL-WWW].

The BCEL is intended to give users a convenient mechanism to analyze,
create and manipulate (binary) Java class files. It offers an object-oriented
view of otherwise raw data, including program code. This library is, therefore,
well-respected especially in the compiler-writer community whenever the JVM
is chosen as the target machine of the compiler. Compiler back-ends use the
BCEL to produce code for the JVM; and as new compilers may be faulty, they
may produce bad code. Testing these compilers often is a difficult task. The
generated code should not only be semantically correct, but it also has to pass
the verifiers of all existing JVM implementations. Normally, a lot of human
interaction is required to run test cases. If the code is rejected by a verifier,
one often does not know why. Most verifiers emit error messages which do not
identify the offending instruction.

JustIce presents an Application Programming Interface (API) that may be
used to automate the procedure sketched above. The constraints imposed on
class files are designed to be strict, therefore eleminating the need to run several
verifiers on the generated code. If code passes the Justlce verifier, it should pass
all other verifiers. Justlce was also designed to output human-understandable
messages if the verification of some code fails.

The application range of Justlce is not limited to compiler back-ends, in the
same sense as the BCEL is not only useful in this area. Transformations of



Abstract

existing code and even generation of hand-crafted code fall into its scope, too.
As a side effect, Justlce exports some data structures such as a control flow
graph; so its API may also be used for applications targeting other problem
areas such as static analyses of program code.



1 Introduction

1.1 Low Level Security as a Part of a Many-Tiered
Strategy

The Java programming language is well-known for its inherent security facilities
such as the lack of pointer arithmetic or the need for memory allocation and
deallocation. Lesser known is that this is only the top of an iceberg; the Java
Platform implements a many-tiered security strategy [Yellin-WWW]. It was
designed to run even untrusted code — code that possibly was not produced
by a compiler for the Java programming language, code that may be corrupt
or code that may have malicious intent (such as stealing credit card number
information from a hard disk drive). Three considerations were made:

e Untrusted code could damage hardware, software, or information on the
host machine.

e It could pass unauthorized information to anyone.

e It could cause the host machine to become unusable through resource
depletion.

While some security features such as type-safety or the already-mentioned lack
of pointer arithmetic of the Java programming language are a convenient help for
programmers, they can only help to reduce programming errors. Of course these
features do not help targeting the above problems. At a lower level, however,
the Java Platform implements a so-called sandbox: an area where code can be
executed but that has well-defined boundaries shielding the rest of the system.
This is achieved by means of a Java Virtual Machine (JVM) emulation; the host
platform does not directly run untrusted code, but a run-time system which in
turn runs the code, restricting its access to system resources.

A run-time system cannot safely assume that untrusted code is well-behaved.
Code could cause stack overflows, stack underruns, or otherwise erroneous be-
haviour that may bring the run-time system into an undefined state — possibly
allowing access to protected memory areas. One could protect the run-time sys-
tem by letting it predict the effects of every single instruction just in time while
actually executing it — but that would be too time-consuming to be applicable
in practice.

Therefore, good behaviour of program code has to be enforced before it
is actually executed — at least as far as this is possible. This is the lowest
level of Java security; there has to be an integral component in every JVM



1 Introduction

implementation doing so ([VMSPEC2]|, page 420). This part of the JVM is
called the class file verifier, yet better known as the bytecode verifier. Technically
speaking, bytecode verification is only a part of class file verification so class file
verifier is a more embracing term. Justlce implements a whole class file verifier.

publixi cIass_H{ . i )
pll:.lblllc static void main{String[] args]{ Java language ;: print "hallo® Some other
goto 10
> source code source code
H
javac or some other compiler
simila_r Java (often implemented
compiler using the BCEL)
ca fe ba be
00 03 00 2d "class file",
00 13 07 00 "bytecode"
loading mechanism
(network transfer,
: |, local hard disk...}
Verifier
\|/P395°d verification || Java Virtual Machine

Figure 1.1: Concept of Class File Verification

1.2 Why Another Verifier?

As said before, every JVM implementation must contain a class file verifier, so
it is reasonable to ask for the motivation behind creating just another class file
verifier — especially one that is not part of a JVM implementation.

1.2.1 Bytecode Engineers Need Justlce

Shortly after the Jawa Platform was introduced, it was adopted with pleasure
because of its inherent independence from operating systems and concrete hard-
ware. Industry and educational institutions with heterogenous networked com-
puters could now run the same software program on different host machines.
Soon, many efforts were put into research and development of compilers for
programming languages other than the Java programming language that use
the JVM bytecode as target.

Nowadays, many other programming languages do have the JVM as its tar-
get platform; e.g. Fortran [2]j], Ada [AppMag-WWW]|, Scheme [KAWA-WWW]|
or modified Java language versions [GJ-WWW, PMG-WWW]|. A vast collec-
tion of programming languages targeting the JVM can be found on the World
Wide Web [PL4JVM].

10



1.2 Why Another Verifier?

All these compilers emit code for the JVM — and so all these compilers have
to pass the JVM’s verifier. Implementors of such compilers have to consider the
security related constraints the JVM poses on the generated code. It is difficult
to test if the emitted code works on all JVM implementations, passing all JVM
verifier implementations. This is especially problematic if not all of the project’s
class files are loaded into the JVM during a test run, because then they will not
be verified.

Having an opportunity to verify the transitive hull of referenced class files
(starting with some main class file) would be of help; JustIce offers it.

The Bytecode Engineering Library by Markus Dahm is often used as a com-
piler back-end to emit code, but it is also used to hand-craft code or to imple-
ment bytecode transformations. Because Justlce works closely together with
the BCEL, users of the BCEL do not even have to leave their development
environment to run the Justlce verifier.

To our knowledge, Justlce is the only implementation of a Java class file
verifier that was written in the Java programming language [langspec2] itself!.
Because of its Verification API, it can be included in other software projects
written in Java with more ease than any other verifier implementation in a
different programming language could provide.

1.2.2 Justlce is Verbose

Usually, when classes pass the verifier, it is mute. Justlce, in contrast, distin-
guishes between verification results and messages. Messages are often warnings,
but the reason for emitting such a warning instead of a negative verification
result is because the class file does not pose a threat to the integrity of the JVM
and thus does not have to be rejected.

When a verification error occurs and the class file is rejected, even the built-
in verifiers usually produce some output saying so. As an example, consider the
following verifier run:

ehaase@haneman:/home/ehaase > java Cc

Exception in thread "main" java.lang.VerifyError:
(class: Cc, method: ttt signature: ()V)
Recursive call to jsr entry

One might ask which “jsr entry” (a branch target of a jsr or a jsr_w in-
struction) is called recursively and which instructions may be responsible for
this. Compare this to Justlce’s output:

[

Pass 3b, method number O [’public static void ttt()’]:
VERIFIED_REJECTED
Constraint violated in method ’public static void ttt()’:

Tn a personal communication, Robert Stirk told the author that there was a Java imple-
mentation of the verifier discussed in [JBook], written by Joachim Schmid using the BCEL.
However, it is not released for public use yet.

11



1 Introduction

Subroutine with local variable ’1’, JSRs ’[ 36: jsr[168](3) -> astore_1,
8: jsr[168](3) -> astore_1, 30: jsr[168]1(3) -> astore_1, 23: jsr[168](3)
-> astore_1]’, RET ’ 62: ret[169](2) 1’ is called by a subroutine which
uses the same local variable index as itself; maybe even a recursive
call? JustIce’s clean definition of a subroutine forbids both.
[..]

Warnings:

Pass 2: Attribute ’LineNumber(0, 4), LineNumber (0, 5), LineNumber (15,
8), LineNumber (39, 11), LineNumber(47, 12), LineNumber(57, 13), LineNumber (64,
15)? as an attribute of Code attribute ’<CODE>’ (method ’public static
void ttt()?) will effectively be ignored and is only useful for debuggers
and such.

Pass 2: Attribute ’LineNumber(0, 1), LineNumber(4, 1)’ as an attribute
of Code attribute ’<CODE>’ (method ’public void <init>()?) will effectively
be ignored and is only useful for debuggers and such.

Pass 3a: LineNumberTable attribute ’LineNumber (0, 4), LineNumber (O,
5), LineNumber (15, 8), LineNumber (39, 11), LineNumber (47, 12), LineNumber (57,
13), LineNumber(64, 15)° refers to the same code offset (’0’) more than
once which is violating the semantics [but is sometimes produced by
IBM’s ’jikes’ compiler].

This output obviously has an answer to the above question; it shows the only
jsr or jsr_w instructions possibly responsible for a recursive call (which is not
allowed by the specification of the JVM). For the special —but clean— definition
of subroutines JustIce uses, please see section 3.3.2.

Note also the warning messages. Class files that were not generated by Sun’s
javac compiler have a tendency to look a little different in some corner cases.
IBM’s jikes compiler, for instance, produces LineNumberTable attributes (see
2.1.1) which look different from those created by javac. Detecting such differ-
ences is desirable because future JVMs will have stricter verification checks?
(which most old javac-compiled class files will probably still pass). Justlce
guides bytecode engineers to create class files that are indistinguishable from
those created by javac to retain compatibility with Sun’s future JVM imple-
mentations. Figure 1.2 graphically shows the relationship between class files
and the verifier?.

1.2.3 Justlce is Free

Currently, there is no other free and complete open source verifier available
known to the author. You may have a look at the JVM’s source code by Sun
Microsystems but you are not allowed to use the knowledge from that inspection
for your own projects or even use their code. Justlce is a clean-room implemen-

2The Solaris port of Sun’s JVM, version 1.3.0_01, already has (some of) the stricter checks
built in. You may enable them using the command-line option ’-Xfuture’. Nothing about
this issue is mentioned in the specification [VMSPEC2].

3This is a simplicistic figure; unfortunately, there are class files produced by the javac com-
piler that do not pass the verifier. Please see section 7.2.2 for more details.

12



1.2 Why Another Verifier?

Output of the javac compiler
Output of some other compiler targeting the JVM
Class files accepted by the verifier

Well-formed class files
Wel-formed class files with safe (or no) program code

Figure 1.2: Venn diagram showing the operating domain of the Java verifier.

tation: the author wrote Justlce by only reading the Java®™ Virtual Machine
Specification, Second Edition [VMSPEC2| and comparing the behaviour of Jus-
tIce with the behaviour of commercial implementations of Sun Microsystems
and IBM Corporation.

The open source JVM implementation Kaffe [Kaffe-WWW], for example,
does not have a complete verifier built in (although mandated by the JVM
specification).

Kissme |kissme-WWW], another open source JVM implementation, cur-
rently does not include any verifier at all.

The JVM implementations Sable VM [SableVM-WWW]| and Intel Corpora-
tion’s Open Runtime Platform [ORP-WWW] are platforms to experiment with
performance-enhancements. They are not intended to work as general-purpose
JVMs so they do not need to implement verifiers.

Other open source projects that could make use of a free verifier include the
Java compiler ge¢j which is part of the GNU compiler collection [GCC-WWW].

Justlce is covered by the well-known and respected software license GNU
General Public License (GPL); see section 7.4. The author hopes other free
software will benefit from it; from the JustIce software [JustIce| as well as from
this paper describing some of the inner workings of JustIce.

13
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2 The Java Virtual Machine

The Java Virtual Machine (JVM) is an abstract machine specified in [VMSPEC2].
It has no knowledge about the Java programming language; but only of a certain
binary file format: the class file format. A class file contains machine instruc-
tions for the JVM (called bytecodes), a symbol table (called constant pool) and
some other ancillary information.

On method invocation, a local stack frame is set up called the ezecution
frame. It consists of an operand stack and local variables (which may be com-
pared to registers of traditional machines).

The instructions in the code arrays of class files are interpreted by the JVM.
There are 212 legal instructions; they have read-access to the class file’s con-
stant pool and they can modify the operand stack and the local variables in
their execution frame. An invoked method reads its arguments from the local
variables. Certain instructions pass a return value to the invoking method.

2.1 The ClassFile Structure

Traditionally, the JVM loads its programs from files stored on file systems of
host machines; these files have names that end with “class”. It is possible to
store the files in various other ways; a so-called class loader is then used to
transform the files internally to the desired, basic class file format. Therefore, it
suffices to explain the structure of traditional class files. Every class file consists
of a single ClassFile structure as defined below. It defines a single class as
known from the Java Programming Language [langspec2]. The terms class and
class file may therefore be used interchangeably.

As we will see, the ClassFile structure and its sub-structures are defined
for upwards compatibility, i.e., new structure definitions can be added to the
specification easily at a later time.

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;

15



2 The Java Virtual Machine

Header
ConstantMethodRef
v o "printin”
Constant pool “(Ljava/lang/String;)V"

"java/io/PrintStream" \

ConstantFieldref
"aVariable"
"[Ljava/lang/Object;"
"HelloWworld"

Access rights

Implemented interfaces ConstantClass

"java/io/PrintStream"

Fields ConstantString
A "Hello, world"

Methods

getstatic java.l ang. System ou

I dc "Hel | o, world"

i nvokevirtual fjava.io.PrintStreamprintin |

Class attributes

HelloWorld.class
A class file consists of constants, fields, methods, attributes and some ancillary

information. This figure was taken from [BCEL98|, used with permission of the
author.

Figure 2.1: A Class File
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2.1 The ClassFile Structure

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

You may read an 'u’ as 'byte times’; e.g., 'u2’ means ’two bytes in size’. We will
not delve into too much detail here; the exact specification of the entries are
published by Sun [VMSPEC2]. But one should note that besides some other
information, a class file basically defines attributes, constants, fields and meth-
ods. Also, there are strong structural constraints imposed on class files. It is a
verifier’s task to validate them.

2.1.1 Attributes

The general format of an attribute is defined below.

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
ul info[attribute_length];
X

An attribute is basically a typed data container; its type is determined by
its name. Every JVM is required to be silent about attributes of types it does
not know. On the other hand, newly defined attributes are required not to im-
pose a semantical change on the class file. These attributes should be uniquely
named; in fact, the pair (<attribute name>, <attribute length>) is required
to be unique. This is guaranteed because attributes not defined by Sun Mi-
crosystems have to be named according to the package naming scheme of the
Java Programming Language [langspec2|. Certain basic attributes are prede-
fined. They are used in the ClassFile (see section 2.1), field_info (see section
2.1.3) and method_info (see section 2.1.4). Also, attributes may be nested: the
Code attribute references other attributes.
Some examples for predefined attributes are listed below.

The ConstantValue attribute

The ConstantValue attribute has the following format:
ConstantValue_attribute {
u2 attribute_name_index;

u4 attribute_length;
u2 constantvalue_index;

17



2 The Java Virtual Machine

The ConstantValue attribute represents the value of a constant field. It has a
fixed length: it contains only a two-byte reference into the constant pool. Only
field_info structures (see section 2.1.3) contain this type of attribute.

The Code Attribute

The Code attribute is used in the method_info (see section 2.1.4) structure. It
represents the program code of a method and it is defined as follows:

Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
ul code[code_length];
u2 exception_table_length;
{
u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];

This is the most complex of all predefined attributes. Every method that has
code (i.e., every non-native, non-abstract method) must have such an attribute.
Note that the maximum stack depth and the number of local variables for a
method invocation are defined here. This is important for the JVM when it cre-
ates an ezecution frame (see section 2.2.1) at the time the method is invoked.

Also, the exception handlers are defined here. Exception handlers prevent an
executing method from an abrupt completion if an exceptional situation occurs.
Code areas are said to be protected against a class of exceptional situations by
an exception handler'. Algorithm 1 shows an example for the use of exception
handlers. The exact meaning of the instruction opcodes is not important here,
the most common instructions are explained later in this paper.

The most important item, however, is the code item. It defines the bytecode
of this method; i.e., the JVM machine instructions.

!The JVM closely reflects the ezception mechanism of the Java programming language
[langspec2]. In the Java programming language, exceptions can be thrown, and they can
be caught explicitly. If an internal JVM error occurs, the JVM also —implicitly— throws an
exception.

18



2.1 The ClassFile Structure

Algorithm 1 Use of Exception Handlers

[Let start_pc and end_pc protect the area A to B, inclusive. Let the
catch_type be “java.lang.NullPointerException”. Let the handler_pc

point to C.]
aconst_null ; push a NULL onto the operand stack.
A: nop ; do nothing
B: getfield Foo::bar ; dereference NULL, cause NullPointerExc.
return ; never executed
C: nop ; this is executed: we could handle
nop ; the NullPointerException
return ; leave method (complete normally)

The LineNumberTable Attribute

The LineNumberTable attribute is defined as follows:

LineNumberTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 line_number_table_length;
{
u2 start_pc;
u2 line_number;
} line_number_table[line_number_table_length];

}

This attribute describes the relation between source code line numbers and
JVM instruction offsets in the code array of the Code_attribute; it can be
used by debuggers to show the source code of currently executing JVM machine
instructions. This attribute is usually a sub-attribute of a Code_attribute.
Multiple LineNumberTable attributes may together represent a given line of a
source code file.

2.1.2 Constants

All the constants together form the constant pool. The general cp_info struc-
ture is straightforward.

cp_info {
ul tag;
ul infol[];
}

The ’tag’ defines what ’info’ follows it. Constants define either constant values
or constant symbolic references, such as references to other classes. Currently,
eleven constant types are defined: Class, Fieldref, Methodref, Interface-
Methodref, String, Integer, Float, Long, Double, NameAndType and Ut£8.

19



2 The Java Virtual Machine

Most of the names are self-explanatory; the interested reader will find more
information in the specification [VMSPEC2|. Constants can be nested; this is
done by referring to the constant pool index of the enclosed constant.

See the following examples.

CONSTANT_Utf8_info {
ul tag;
u2 length;
ul bytes[lengthl;
X

A CONSTANT Utf8 represents a constant string. Such a string is e.g. used to
describe names of methods, names of fields, names of attributes, types of meth-
ods or types of fields. This string is encoded in UTF-8 format, a variant of the
unicode character set [Unicode]. The tag for this type of constant is simply the
number 1, as defined in the Java Virtual Machine Specification, Second Edition
[VMSPEC?2].

CONSTANT_NameAndType_info {
ul tag;
u2 name_index;
u2 descriptor_index;

}

A Constant  NameAndType represents a name and a signature of a method,
the tag is the number 12. Both class_index and descriptor_index refer to a
CONSTANT_Ut£8.

CONSTANT_InterfaceMethodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

A CONSTANT_InterfaceMethodref describes a reference to a method defined
in an interface class (see section [langspec2| for an explanation of interfaces),
the tag is number 11. The interface class is referenced via a two-byte index into
the constant pool. A Constant_Class is expected there describing a reference
to some class file. Every method has a name, zero or more argument types
and a return type; this is described in the CONSTANT _NameAndType that is also
referenced via a two-byte constant pool index.

Note that there are implicit constraints on the integrity of a class file: for
example, there must not be a CONSTANT _Integer where a CONSTANT_Utf8 is
expected for a certain entity. As another example, the names and the types of
methods are encoded as strings in UTF-8 format [Unicode]. They have to be
well-formed (according to the specification) to be valid.

20



2.1 The ClassFile Structure

2.1.3 Fields

Each field is described by a field info structure as defined below.

field_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

A field has to be unique in a class file with respect to its name and descriptor?.
We see that fields reference constants in the constant pool via their constant
pool indices (such as a CONSTANT_Ut£8 describing a field’s name). An important
attribute used by fields is the ConstantValue attribute (see section 2.1.1).

The access_flags entry is a bit vector that specifies the accessibility and
other properties® of the field. E.g., a field with the ACC_PRIVATE* bit set is
not accessible to other classes. A field with the ACC_PUBLIC® bit set is accessi-
ble to any other class. Any combination with both the ACC_PRIVATE and the
ACC_PUBLIC bit set is not valid.

The descriptor_index refers to a CONSTANT_Utf8 that symbolically encodes
the type of the field.

2.1.4 Methods

Each method is described by a method info structure as defined below.

method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

As we can easily see, this is exactly the same structure we already know as
field_info (see section 2.1.3). The difference lies in the meaning of the enlisted
entities. For example, an access flag saying a field was volatile (non-cacheable)
would not make any sense if set in a method_info structure. Vice versa, an ac-
cess flag saying the floating point instructions should work in “FP-strict” mode
would be of no use if set in a field_info structure.

2The descriptor of a field describes its type. E.g., a descriptor of “[I” means “one-dimensional
array of int”.

30ften called wvisibility.

4Bit number 1.

5Bit number 0.
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2 The Java Virtual Machine

Methods use a different set of attributes than fields; for example, the Constant-
Value attribute (see section 2.1.1) is of no use here. The Code and Exceptions
attributes frequently used by methods are of no use for fields on the other hand.

2.2 The Execution Engine

Before a piece of code (the code of a “method”) is executed, an ezecution frame
is set up. It consists of a program counter (as known from traditional CPUs), a
set of local variables (similar to registers known from traditional CPUs), and an
operand stack. For each new invocation instance of a method, a new execution
frame is set up; it is destroyed on method termination.

Because a method may invoke other methods or itself recursively, there is a
global method invocation stack.

There also is a garbage-collected heap shared among the execution frames.
This heap is used for object allocation (see section 2.2.2).

The number of local variables is not fixed. Every method defines how many
local variables are used for its code (up to 65536).

Also note that there is no equivalent of a Processor Status Word (PSW) in
the JVM. Traditionally, a PSW has flags that are set implicitly during execution
of the instructions (such as an overflow or is-zero flag). This is often used for
conditional branching. The JVM, however, uses the operand stack to store the
result of a comparison instruction explicitly. This result is often read from the
stack by the JVM’s conditional branching instructions.

Should exceptional situations occur (such as an out-of-memory situation),
the JVM does not lock up. Instead, an “exception is thrown”; the currently
executing program is signalled. These signals can be processed (“exceptions
can be caught”). If such a signal is not handled by the currently executing
method, the JVM will search a handler through the invocation hierarchy and
stop execution only if none was found.

There is a thread mechanism in the JVM. Basically every thread creates an
own method invocation stack (so there may be more than one active execution
frame at a time), but this feature is not important for the rest of this text.

2.2.1 Local Variables and the Operand Stack

The method information in a class file defines how many local variables are
used on this method’s invocation. It also defines the maximum operand stack
size. Together, the local variables array and the operand stack are called the
execution frame.

A single stack slot has a width of 32 bits, which is also the width of a local
variable. Therefore, values of types that occupy 64 bits (double and long) must
be stored in two consecutive stack slots or local variables.

The verifier takes care that the stack cannot overflow and that it cannot
underflow. Also, it takes care that instructions may only access local variables
if they contain a value of a known, correct type (see section 3.3).
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Method Invocation Stack

Free memory

invocation instance
of method "foo"

Invocation instance
of method "bar”

invocation instance
of method “foo"

Invocation instance
of method "main”

L

| op. stack slot |

This figure shows a method invocation stack. Method main was invoked by the
system, main invoked foo, foo invoked bar, and bar invoked foo recursively.
This figure assumes main allocates one local variable and one operand stack slot,
foo allocates three local variables and two operand stack slots and bar allocates
one local variable and two operand stack slots.

Figure 2.2: Method Invocation Stack
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2 The Java Virtual Machine

2.2.2 Introduction to JVM Instructions

This section is derived from section 2.2 of [BCEL98]|, used with permission of
the author.

The JVM’s instruction set currently consists of 212 instructions, 44 opcodes
are marked as reserved and may be used for future extensions or intermediate
optimizations within the Virtual Machine. The instruction set can be roughly
grouped as follows:

Stack operations: Constants can be pushed onto the stack either by loading
them from the constant pool with the 1dc instruction or with special
“short-cut” instructions where the operand is encoded into the instructions,
e.g., iconst_0 or bipush (push byte value).

Arithmetic operations: The instruction set of the JVM distinguishes its operand
types using different instructions to operate on values of specific type.
Arithmetic operations starting with i, for example, denote an integer op-
eration. E.g., iadd that adds two integers and pushes the result back on
the operand stack. The Java types boolean, byte, short, and char are
handled as integers by the JVM.

Control flow: There are branch instructions like goto and if_icmpeq, which
compares two integers for equality. There is also a jsr® (jump into sub-
routine) and ret (return from subroutine) pair of instructions. Exceptions
may be thrown with the athrow instruction. Branch targets are coded as
offsets from the current byte code position, i.e., they are coded with an
integer number.

Load and store operations for local variables like iload and istore. There
are also array operations like iastore which stores an integer value into
an array.

Field access: The value of an instance field may be retrieved with getfield
and written with putfield. For static fields, there are getstatic and
putstatic counterparts.

Method invocation: Methods may either be called via static references with
invokestatic or be bound virtually with the invokevirtual instruction.
Super class methods and private methods are invoked with invokespecial.

Object allocation: Class instances are allocated with the new instruction, ar-
rays of basic type like int[] with newarray, arrays of references like
String[][] with anewarray or multianewarray.

Conversion and type checking: For stack operands of basic type there exist
casting operations like £2i which converts a float value into an inte-
ger. The validity of a type cast may be checked with checkcast and

5There is a “wide” version of jsr called jsr_w. The instructions jsr/jsr_w and ret play in
important role in chapter 3.3.
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the instanceof operator can be directly mapped to the equally named
instruction.

Most instructions have a fixed length, but there are also some variable-length
instructions: In particular, the lookupswitch and tableswitch instructions,
which are often used by compilers to implement the Java language switch()
statements. Since the number of case clauses may vary, these instructions
contain a variable number of statements.

In a class file, the code item in the Code attributes (which in turn are
attributes of method_info structures), is a byte array in which binary represen-
tations of JVM instructions are stored sequentially. This is also called bytecode.

The JVM is a stack-based machine. There are local variables which may be
compared to registers, but most instructions work on the operand stack. E.g.,
the iadd instruction pops two integers from the operand stack and pushes the
result of the add operation on top of the stack.

We will not list all of the instructions here, since these are explained in detail
in the JVM specification. However, you will find the most common instructions
in table 2.1, cited with slight corrections and modifications from chapter 4 of
[INS].

Table 2.1: Type Prefixes and the Most Common JVM Instructions
‘ Prefix ‘ Bytecode type ‘

Integer

Floating point

Long

Double precision floating point
Byte
Short
Character
Object reference

OO |w [T | s =

Instruction int | long | float | double | byte | char | short | object ref. | Function

72c X Convert value of type
<7?> to character

72d X | X X Convert value of type
<?7> to double

721 X X X Convert value of type
<7> to integer

72f X | X X Convert value of type
<7> to float

721 X X X Convert value of type
<7> to long

72s X Convert value of type

<?> to short
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2 The Java Virtual Machine

Instruction int | long | float | double | byte | char | short | object ref. | Function

7add X | X X X Add two values of type
<>
?aload X | X X X X | X X X Push an element of type
<7> from an array onto
the stack
?and X | X Perform logical AND on
two values of type <7>
7astore | X | X X X X X X X Pop an element of type

<?7> from the stack and
store it in an array of
type <7>

?cmp X Compare two long val-
ues. If they are equal
push 0, if the first is
greater push 1, else push
-1

?cmpg X X Compare two IEEE val-
ues of type <7> from
the stack. If they are
equal push 0, if the first
is greater push 1, if the
second is greater push -
1. If either is NaN (not
a number) push 1

7cmpl X X Compare two IEEE val-
ues of type <7> from
the stack. If they are
equal push 0, if the first
is greater push 1, if the
second is greater push -
1. If either is NaN (not
a number) push -1

?const X | X | X X X Push a constant value of
type <7> onto the stack
7div X | X X X Perform a division using

two values of type <7>
and push the quotient
onto the stack

7inc X Increment the top of the
stack (possibly by a neg-
ative value)

?ipush X X Push a sign extended
byte or short value onto
the stack
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Instruction

int

long

float

double

byte

char

short

object ref.

Function

?load

Push a value of type
<?7> from a local vari-
able onto the stack

?mul

Perform multiplication
of two values of type
<7>

Tneg

Negate a value of type
<>

Tnewarray

Create a new array of
object references

?or

Perform logical OR on
two values of type <7>

Trem

Perform a division using
two values of type <7>
and push the remainder
onto the stack

Preturn

Return a value of type
<?7> to the invoking
method

?shl

Perform arithmetic shift
left on a value of type
<7>

?shr

Perform arithmetic shift
right on a value of type
<7>

?store

Pop a value of type <7>
and store it into a local
variable

?sub

Perform a subtraction
using two values of type
<?7>

The opcode names are mostly self-explanatory. In this paper, all bytecode is
commented to support the intuitive understanding. Algorithms 2 and 3 show an
example bytecode taken from [BCEL98|. It implements the well-known faculty
function. To understand this example, it is important to know that method
arguments are stored into the local variables of a newly created execution frame
upon method invocation.

Algorithm 2 Methed fac in a class Faculty, Java programming language version

public static final int fac(int n){

return (n==0)71:n*fac(n-1);

s
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Algorithm 3 Method fac in a class Faculty, Java bytecode version

Faculty.fac (I)I

0: iload_O ; load argument onto stack

1 ifne #8 ; non-zero? Then branch to 8.
4: iconst_1 ; push constant 1 onto stack
5: goto #16 3 jump to 16

8: iload_0 ; load argument onto stack

9: iload_0 ; load argument onto stack

10: iconst_1 ; push constant 1 onto stack
11: isub ; subtract the stack top from

; the stack next-to-top which becomes
; the new stack top
12: invokestatic Faculty.fac (I)I ; call method fac recursively,
; the new invocation
; instance’s argument is the stack top
15: imul ; multiply the return value with the
; argument given to the current
; invocation instance
16: ireturn ; return value on top of the
; stack to the invoking method
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3 Specification of the Verification
Passes

Sun describes a four-pass class file verifier in The Java Virtual Machine Speci-
fication, Second Edition [VMSPEC2]|. It is not necessary to implement the ver-
ification algorithms literally; and it is not possible anyway (see section 3.3.2).
However, implementing a verifier with a multiple-pass architecture makes sense.
It is a good thing to stay close to the specification because it is well-known
throughout the bytecode engineering community. Also, the boundaries between
the passes are not arbitrary. They are drawn to improve the performance of
the verifiers built into JVMs. For example, classes are not verified (completely)
before they are actually used but they are loaded as soon as they are referenced
in a certain way. Most verifiers use the traditional multiple-pass architecture,
including Kimera [Kimera-WWW]. Work in other directions (for instance, the
one-pass-architecture proposed by Fong [Fong-WWW]) did not yield lasting re-
sults.

Pass one is basically about loading a class file into the JVM in a sane way
and pass two verifies that the loaded class file information is consistent. Pass
three verifies that the program code is well-behaved; pass four verifies things
that conceptually belong to pass three but are delayed to the run-time for per-
formance reasons.

Sometimes implementation details are discussed in this chapter. Whenever
the specification [VMSPEC2| was ambigous about some issue, the behaviour of
Sun’s JVM implementations was observed. The discussed details are part of the
specification of the Justlce verifier.

3.1 Pass One

The first pass of the verifier is only vaguely specified. It is there to assure a
class file “has the basic format of a class file. The first four bytes must
contain the right magic number. All recognized attributes must be
of the proper length. The class file must not be truncated or have
any extra bytes at the end. The constant pool must not contain any
superficially unrecognizable information” ([VMSPEC2]|, page 141).

The right magic number is 0xCAFEBABE ([VMSPEC2|, page 94), which is
easy to assure.

It is not clear what “superficially unrecognizable information” exactly is,
however. If an attribute is not known to the JVM (or verifier) implementation,
it has to be ignored — so this does not seem to be “superficially unrecognizable
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information”. Attributes that are not used cannot be detected in pass one. One
would have to look at the bytecodes to decide whether an attribute is used or
not (which is not the domain of pass one, but of pass three).

Observations show that most existing JVM verifiers' ignore “extra bytes at
the end” instead of rejecting class files bearing them.

The other two statements specify verification of the class file structure (and
the structure of the attributes therein). But this is also the domain of pass two!
Only by inspecting the way the JVM loads, resolves and prepares classes one
will understand the precise boundary between verification passes one and two
[Fong-WWW].

'Being careful when loading a class file’ is a good definition for pass one: the
structure of the file to load is untrusted. Every implicit statement such as “this
attribute has a length of 1234 bytes in total” is validated.

Resolution is the transformation of a symbolic reference to an actual refer-
ence — i.e., as long as there is only a symbolic reference to an entity, this entity
cannot be verified at all because it has not been loaded yet. Passes two and
three are performed during the resolution of a class file; while loading of the
class file —pass one— must have been performed before. Resolution as such is
meaningless to Justlce; the term is only used to draw the borders between the
verification passes.

3.2 Pass Two

The checks performed in pass two enforce that the following constraints are
satisfied.

e Ensuring that final classes are not subclassed and that final methods are
not overridden.

e Checking that every class (except java.lang.0Object) has a direct super-
class.

e Ensuring that the constant pool satisfies the documented static constraints:
for example, that each CONSTANT_Class_info structure in the constant
pool contains in its name_index item a valid constant pool index for a
CONSTANT_Ut£f8_info structure.

e Checking that all field references and method references in the constant
pool have valid names, valid classes, and a valid type descriptor.

As Frank Yellin puts it [Yellin-WWW]: pass two “performs all verification that
can be performed without looking at the bytecodes”. Also, “this pass does
not actually check to make sure that the given field or method really exists
in the given class; nor does it check that the type signatures given refer to
real classes.” Note that again resolution plays an important role to create the

! An example of a verifier with this behaviour is the one implemented in Sun’s Solaris port
of the JVM, version 1.3.0_01.
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boundary between two passes; here it is the boundary between pass two and
pass three. Because linking-time verification enhances the performance of the
JVM, checks that basically belong to pass two are delayed to pass three. This
leads to the obvious contradiction in the sentences cited above.

This performance enhancement has an ugly side effect. Consider a reference
to a method m contained in a class file C that does not exist. As long as this
reference is not used, i.e., resolved, the absence of C cannot be detected. Such a
reference should in the author’s opinion regarded as “superficially unrecognizable
information” (see section 3.1) and therefore be detected.

This pass has to verify the integrity of the clas file’'s data structures as ex-
plained in section 2.1. As an example, consider the LineNumberTable atribute.
Sun did not specify there has to be exactly one LineNumberTable attribute (or
none at all) per method, so possibly there is more than one attribute of that
kind. This lax specification is not necessary due to the fact that you can put
all information in a single LineNumberTable_attribute?, but Sun did specify
it this way ([VMSPEC2], page 129).

Verifiers are requested to reject class files with inconsistent information in
their attributes. However, here it may be that only by looking at all Line-
NumberTable_attributes of a method, an inconsistency can be detected. Jus-
tIce does so and rejects class files with inconsistent LineNumberTable informa-
tion.

Furthermore, it issues warnings if such an attribute is detected at all to
discourage its use (see section 4.2). This is done because of possible different
interpretations of the specification.

It should be noted that the use of attributes raises a few more problems to
class file verification. A simple case is the presence of an unknown attribute
that may safely be ignored. It is explicitly stated that such a class file must not
be rejected. On the other hand, how should a verifier react if —for example- a
field_info (see section 2.1.3) structure encloses a Code_attribute? Justlce
will issue a warning but not reject the class file.

3.3 Pass Three

Performing pass three basically means wverifying the bytecode. There are so-
called “static constraints” on both the instructions in the code array and their
operands. There are also so-called “structural constraints”. The structural con-
straints specify constraints on relationships between JVM instructions, so some
people (including the author) regard “structural constraints” as a misnomer;
they should be called “dynamic constraints”.

Static constraints are easily enforced using very simple checks. Here is an
example for such a check: let there be a Code (see section 2.1.1) attribute with a
max_locals value of 2. Only local variables number 0 and 1 may be accessed by
the bytecode in this Code attribute. For all instructions accessing local variables,
make sure they do not access any other local variable.

2Any number of 1line_number_table array entries fits nicely in a single
LineNumberTable_attribute attribute.
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Structural constraints are enforced using an algorithm sketched by Sun; it
implements a symbolic execution of a method’s code, by means of data flow
analysis including type inference ([VMSPEC2], pages 143-151). This algorithm
is called the data flow analyzer. It is intuitively easy to understand, but it is hard
to prove its correctness. The reason for that is the very weak specification of its
subtleties; especially subroutines, wide date types and object initialization (see
below). The general approach, however, is sound [BCV-Soundness|. Here is an
example for a structural constraint enforced by this algorithm: during program
execution, at any given point in the program the operand stack is always of the
same height, no matter which code path was taken to reach that point.

Pass three is the core of the verifier. Note that we will split this pass up into
two passes, namely a pass verifying the static constraints and a pass verifying
the structural constraints of a method’s code. We will call these passes “pass 3a”
and “pass 3b”. In a way, they resemble pass one and pass two: the former pass
carefully parses an entity, while the latter pass performs additional verification.

By defining pass four, the specification [VMSPEC2] implicitly excludes “cer-
tain tests that could in principle be performed in Pass 3”, because they are
“delayed until the first time the code for the method is actually invoked”. On
the other hand, verifiers are allowed to perform pass four partially or completely
as a part of pass three. Justlce performs the pass four checks in pass 3a.

3.3.1 Static Constraints: Pass 3a

Sun gives examples of what the verifier does before starting the data flow ana-
lyzer ([VMSPEC2], pages 143-144):

e Branches must be within the bounds of the code array
for the method.

e The targets of all control-flow instructions are each the
start of an instruction. In the case of a wide instruction
the wide opcode is considered the start of the instruc-
tion, and the opcode giving the operation modified by
that wide instruction is not considered to start an in-
struction. Branches into the middle of an instruction
are disallowed.

e No instruction can access or modify a local variable at
an index greater than or equal to the number of local
variables that its method indicates it allocates.

e All references to the constant pool must be an entry
of the appropriate type. For example: the instruction
ldc can be used only for data of type int or float or for
instances of class String; the instruction getfield must
reference a field.

e The code does not end in the middle of an instruction.

e Execution cannot fall off the end of the code.

e For each exception handler, the starting and ending
point of the code protected by the handler must be at
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the beginning of an instruction or, in the case of the
ending point, immediately past the end of the code.
The starting point must be before the ending point.
The exception handler code must start at a valid in-
struction, and it may not start at an opcode being
modified by the wide instruction.

Most of these constraints are either static constraints on instructions or
on their operands. A full list of constraints can be found in the Java Virtual
Machine Specification, Second Edition ([VMSPEC2|, pages 133-137).

The check for execution falling off the end of the code is an exception: this
is a structural constraint and should therefore be performed in pass 3b. Sun’s
verifiers, however, reject code that has an unreachable nop at the end of the code
array. Obviously, they reject the code before performing data flow analysis. For
the sake of compatibility, Justlce performs this check in pass 3a.

Note that the JVM’s instructions differ in length. Some instructions occupy
only one byte (such as nop), others occupy three bytes (such as goto). Branch
instructions could therefore target operands of instructions. For example, line 1
of algorithm 3 reads “1: ifne #8”. If it would read “1: ifne #7”, this code
was malformed. A special case is the instruction wide. This instruction takes
another instruction as its operand, so one could be misguided into thinking this
embedded instruction was a valid target for branches. It is not.

The checks Sun delays until pass four are performed in pass 3a by Justlce.
These are checks to ensure allowed and possible access to a referenced type,
listed below.

e Is the type (class or interface) currently under examination allowed to
reference the type®?

e Does the referenced method or field exist in the given class?

e Does the referenced method or field have the indicated descriptor (signa-
ture)?

e Does the method currently under examination have access to the refer-
enced method or field?

3.3.2 Structural Constraints: Pass 3b

The structural constraints of JVM instructions are enforced by a data flow
analyzer. This algorithm ensures the following constraints ([VMSPEC2], page
142).

e The operand stack is always the same size and contains
the same types of values.

e No local variable is accessed unless it is known to con-
tain a value of an appropriate type.

e Wlethods are invoked with the appropriate arguments.

3Interfaces may contain code, this is normally used for static initialization of final variables.
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e Fields are assigned only using values of appropriate
types.
e All opcodes have appropriate type arguments on the

operand stack and in the local variable array.

A full list of structural constraints can be found in The Java Virtual Machine

Specification, Second Edition ([VMSPEC2], pages 137-139).

Sun’s Verification Algorithm

Sun specifies the data flow analyzer by giving an informal algorithm ([VMSPEC2],
pages 144-146). This algorithm it cited here completely because it is the very
core of the verifier. According to this algorithm, every bytecode instruction has
a “changed” bit. Initially, only the “changed” bit of the first instruction is set.

34

1. Select a virtual machine instruction whose "changed"

bit is set. If no instruction remains whose "changed"
bit is set, the method has successfully been verified.
Otherwise, turn off the "changed" bit of the selected
instruction.

. WIodel the effect of the instruction on the operand

stack and local variable array by doing the following:
e If the instruction uses values from the operand stack,
ensure that there are a sufficient number of values on
the stack and that the top values on the stack are of
an appropriate type. Otherwise, verification fails.

e If the instruction uses a local variable, ensure that
the specified local variable contains a value of the ap-
propriate type. Otherwise, verification fails.

e If the instruction pushes values onto the operand
stack, ensure that there is sufficient room on the operand
stack for the new values. Add the indicated types to
the top of the modeled operand stack.

e If the instruction modifies a local variable, record
that the local variable now contains the new type.

. Determine the instructions that can follow the current

instruction. Successor instructions can be one of the
following:

e The next instruction, if the current instruction is
not an unconditional control transfer instruction (for
instance goto, return, or athrow). Verification fails if
it is possible to "fall off" the last instruction of the
method.

e The target(s) of a conditional or unconditional branch
or switch.

e Any exception handlers for this instruction.

. WIerge the state of the operand stack and local vari-

able array at the end of the execution of the current
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instruction into each of the successor instructions. In
the special case of control transfer to an exception han-
dler, the operand stack is set to contain a single object
of the exception type indicated by the exception han-
dler information.

e If this is the first time the successor instruction has
been visited, record that the operand stack and local
variable values calculated in steps 2 and 3 are the state
of the operand stack and local variable array prior to
executing the successor instruction. Set the "changed"
bit for the successor instruction.

e If the successor instruction has been seen before,
merge the operand stack and local variable values cal-
culated in steps 2 and 3 into the values already there.
Set the "changed" bit if there is any modification to
the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on each
stack must be identical. The types of values on the stacks
must also be identical, except that differently typed refer-
ence values may appear at corresponding places on the two
stacks. In this case, the merged operand stack contains a
reference to an instance of the first common superclass of
the two types. Such a reference type always exists because
the type Object is a superclass of all class and interface
types. If the operand stacks cannot be merged, verification
of the method fails.

To merge two local variable array states, corresponding
pairs of local variables are compared. If the two types are
not identical, then unless both contain reference values, the
verifier records that the local variable contains an unusable
value. If both of the pair of local variables contain reference
values, the merged state contains a reference to an instance
of the first common superclass of the two types.

Certain instructions and data types complicate the data flow analyzer, most
notably the instruction ret (see section 2.2.2). The algorithm above even uses
a special definition of merging for the ret instruction (see [VMSPEC2|, page
151). The ret instruction is parameterized with a value of type returnaddress
which is read from a local variable and used as a branching target. The ret
instruction is there to implement a (control flow) return from a subroutine.

Reachability of Instructions

For the data flow analysis algorithm, you need to know all the possible control
flow successors of every instruction, i.e., you need to build a control flow graph
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(see below). Without the instructions jsr*, jsr_w and ret this calculation
would be easy. But to calculate successors of a ret instruction, you need a
complete control flow graph: you need to find out which jsr or jsr_w and ret
pairs belong together. Therefore, a cycle of self-dependency is created that has
to be broken somewhere. This is explained in detail below.

This was also an issue that led to the definition of the term subroutine that

Justlce uses. This definition allows the prediction of a ret instruction’s target
without performing control flow analysis.

Subroutines

Subroutines make the verification algorithm extremely difficult. They are harshly
underspecified. Although “the Java virtual machine has no guarantee that any
file it is asked to load was generated by that compiler”, the subroutine specifica-
tion explains how javac transforms “try/catch/finally” clauses into subrou-
tines [VMSPEC2|. Intuitively, one gets the idea that a subroutine starts with
some jump target of a jsr or jsr_w instruction and ends with a ret instruction.
But the specification fails to correctly specify what subroutines exactly are at
machine instruction level. Consider algorithm 4.

Algorithm 4 Is This a Subroutine?

00 jsr 03 ; Jump to ‘‘subroutine’ at offset 03; push return
; address 03 onto stack.

03 pop ; Pop the return address off the stack.

04 nop ; No operation.

What is this? Is the NOP instruction part of a subroutine or not? Algorithm
5 shows another example.

Do we deal with one subroutine (which is the case if you define subroutines
to start with a jsr or jsr_w’s target) or are these two subroutines (which is the
case if you count the ret instructions and believe that there must be exactly
one ret per subroutine)?

Recursive calls to subroutines are forbidden by the specification; however,
Sun’s verifier implementations are not consequently deciding which recursive
calls to reject®. This is a failure due to a missing definition of the term subrou-
tine.

While the first example passes Sun’s verifier, the second example is rejected.
The exact definition of the term subroutine cannot be deducted from ther be-
haviour of Sun’s verifier.

A new, clean specification had to be defined. Such a specification can of
course not be compatible with the behaviour of Sun’s verifier in all corner cases.

“Remember, a jsr or jsr_w instruction is an unconditional branch instruction that jumps
into a subroutine. Usually a ret instruction leaves the subroutine.
5This was experimentally found by the author and also published in [JBook].
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3.3 Pass Three

Algorithm 5 One or Two Subroutines?

00
01

04

05

06

07

08

11

12
13

iload_O0 ; Load a numerical O onto the stack.
jsr 05 ; Jump to "subroutine" at offset 05; push return

; address 04 onto stack.

return ; Leave the method.
dup ; Duplicate the stack’s top.
astore 0 ; Store the return address from the stack into

; local variable O.

astore 1 ; Store the return address from the stack into

; local variable 1.

ifeq 12 ; If there is a O on top of the stack, jump to

; offset 12.

ret O ; Return to offset 4 (because this is in local
; variable O here).

nop ; No operation.

ret 1 ; Return to offset 4 (because this is in local

; variable 1 here).

A Precise Definition of the Term Subroutine

Because Sun —inappropriately— describes how javac creates subroutines, the
definition presented here is based on the observation of jawvac’s behaviour. This
makes the definition compatible with a lot of existing code, but without violating
the validity of far-reaching conclusions earned by exploiting a clean definition®.

Every instruction of a method is part of exactly one subroutine (or the
top-level).

The first instruction of a subroutine is an astore N instruction that stores
the return address in local variable number N.

There must be exactly one ret instruction per subroutine. This instruc-
tion must work on the local variable N;i.e., it is a ret N instruction.

Subroutines are not protected by exception handlers.

No instruction that is part of a subroutine is the target of an exception
handler.

Subroutines of a subroutine do not access local variable N. A subsubroutine
of a subroutine is also considered a subroutine here, in a recursive sense.

As we can see, a subroutine can be characterized by its set of instructions, the
most important instruction being the target of some jsr or jsr_w instruction
that is not part of the subroutine itself. Another important property is the local
variable N the ret instruction is working on.

5Unfortunately, in some rare cases, javac produces code that is incompatible with the con-

straints related to our definition of subroutine. However, javac also produces code which
is incompatible with Sun’s verifier (see section 7.2.2).
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3 Specification of the Verification Passes

This way, we can make sure subroutines are properly nested, so that JustIce
would reject both the example bytecodes in algorithms 4 and 5.

The astore instruction mentioned above is so important because there is
no JVM instruction that can read values of a returnaddress type from local
variables. After entering a subroutine, the astore instruction pops the return
address off the operand stack and writes it into local variable number N. There-
fore we can be sure it will not be duplicated or deleted as in algorithms 4 and
5.

The constraints concerning exception handlers are defined to make sure that
we can observe the control flow statically. If an exception is thrown from within
a subroutine, the method simply “completes abruptly” ([VMSPEC2|, page 74).
If we would allow subroutine instructions to be protected by exception handlers,
it would not be clear if the handling instructions are part of the subroutine or
not.

We can also derive subsubroutines of subroutines recursively by exploiting
the properly-nested property explained above.

The Control Flow Graph

A control flow graph is a directed graph with edges that represent possible
branches of control flow. Similarly, the nodes describe groups of physically
adjacent instructions that have to be executed one after another — without any
possible control flow branch to another instruction but the physical successor’.
Figure 3.1 shows such a control flow graph for algorithm 3, the implementation

of the faculty function discussed earlier.

0 : iload 0
1 : ifne #8

4 : iconst 1 —)- 16: ireturn

5 : goto #16
/

8 : ilocad 0

9 : ilocad 0

10: iconst 1

11: isub

12: invokestatic Faculty.fac (I)I
15: imul

Figure 3.1: A Conventional Control Flow Graph

"More information about control flow graphs can be found in [DragonBook].
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The JVM defines a sort of control flow orthogonal to the common execution
of instructions, namely, the exception mechanism. Because every instruction
could possibly throw an exception (say, a java.lang.VirtualMachineError)
during its execution, the control flow graph calculated by Justlce always uses
only one instruction per node. This also reflects the original verification al-
gorithm given by Sun Microsystems. Figure 3.2 shows an example for such a
control flow graph.

0 : iload 0 8 : ilcad 0

1 : ifne #8 9 : ilcad 0

4 : iconst 1 10: iconst 1
N J/

5 : goto #16 [11: isub |

d

12: invckestatic Faculty.fac (I)I

4
le6: /

15: imul
ireturn

Figure 3.2: A Control Flow Graph as Used by Justlce

Instruction nodes are augmented with a data structure that represents the
simulated operand stack and the simulated local variables array. When run-
ning the core verification algorithm, these nodes are put into a queue which is
equivalent to tagging them with a changed bit as Sun describes®.

Subroutines Revisited: Interplay With the Data Flow Analyzer

There is another problem concerning subroutines. Normally, when merging the
type information of two simulated local variables, the common type is recorded
as unusable if the types differ. This unusable value is then propagated to sub-
sequent instructions to prevent read access.

8As explained later, JustIce uses a queue that allows duplicates: this is a slight semantical
change.
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3 Specification of the Verification Passes

This is not the case with the successors of the ret instruction. These suc-
cessors are physical successors of some jsr or jsr_w instructions.

Subroutines are said to be polymorphic with respect to their local variables
arrays. As an example, consider algorithm 6. This algorithm shows legal JVM
code. Inline 11, local variable 0 may contain a value of the integer or the float
type; depending on the jsr instruction that entered the subroutine. Normally,
this would cause the verifier to mark local variable 0 as unusable and propagate
this information. The successors of the ret instruction are the instructions in
lines 5 and 10. However, a correct verifier does not mark local variable 0 as
unusable for them, because the local variable 0 was not accessed or modified in
the subroutine.

Algorlthm 6 Local Variables are Polymorphic in Subroutines
0 iconst_0 ; load integer constant O onto stack
1 istore 0O ; move it into local variable O

2 : jsr 11 ; enter subroutine

5 : fconst 0.0 ; load float constant 0.0 onto stack
6

7

fstore 0O ; move it into local variable O
jsr 11 ; enter subroutine again
10: return ; complete method
11: astore 1 ; Subroutine entry: move return address
; into local variable 1
12: nop ; do nothing
13: ret 1 ; return from subroutine

Basically, only the local variables accessed in the called subroutine (and the
subroutines called from there, recursively) are merged with the corresponding
successor of a ret instruction. This means that in this special case, three sources
are used to construct the merged array of local variables type information (in-
stead of only two): the jsr/jsr_w instruction, the ret instruction and the "old"
type information of the ret instruction’s target (which is the physical successor
of the jsr/jsr_w instruction).

One possibility to deal with this situation is inlining. For instance, the
verifier of the ElectricalFire JVM [EF]| uses this approach: instruction nodes
of subroutines are duplicated for every calling jsr or jsr_w instruction. This
approach is equivalent to the one sketched by Sun (see [VMSPEC2|, page 151).

Justlce uses a variant of this approach: instruction nodes are augmented
with sets of local variables arrays. The local variables array used for merg-
ing a ret’s type information with the physical successor of some jsr/jsr_w
instruction is keyed by that jsr/jsr_w instruction itself. This still implies a
special merging mechanism for the ret instruction: only the physical successor
of one jsr/jsr_w instruction can be merged with the ret at a time, because
other jsr/jsr_w instructions have possibly not been symbolically executed yet
and thus bear no type information at the time of merging. In this scenario,
an instruction in a subroutine plays multiple roles; one for each occurence of a
jsr/jsr_w that is calling the subroutine. The queue holding the instructions to
symbolically execute is therefore required to allow duplicates.
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3.4 Pass Four

Wide Data Types

The types long and double use two consecutive local variables if written to
or read from a local variables array. Similarly, they use two operand stack
slots. This makes type verification a bit more difficult because of subtle special
cases. For example, when a method uses three local variables at maximum (local
variables 0, 1 and 2), the code is not allowed to store a double value in local
variable 2 (because local variable 3 would have to be occupied, t0o).

Instance Initialization and Newly Created Objects

It would be difficult to verify that a newly created instance is initialized exactly
once, given all possible paths of execution flow in a method. Fortunately (from
a verifier implementor’s view), Sun puts constraints on object initialization that
match the behaviour of the verifier — instead of putting sane constraints on
object initialization and actually verifying them.

“A valid instruction sequence must not have an uninitialized object on the
operand stack or in a local variable during a backwards branch [...]. Otherwise,
a devious piece of code might fool the verifier into thinking it had initialized
a class instance when it had, in fact, initialized a class instance created in a
previous pass through a loop” ([VMSPEC2], page 148).

3.4 Pass Four

Pass four performs “certain tests that could in principle be performed in Pass
3” ([VMSPEC2], page 142). These tests are usually delayed by JVM implemen-
tations until run-time, because they possibly trigger the loading of referenced
class file definitions. This is a performance enhancement. However, “A Java
virtual machine implementation is allowed to perform any or all of the Pass 4
steps as part of Pass 3” ([VMSPEC2]|, page 143). The tests

e ensure that the referenced method or field exists in the given class

e check that the referenced method or field has the indicated descriptor
(signature)

e check that the currently executing method has access to the referenced
method or field.

Justlce has no run-time system and so the tests of pass four are performed in
pass 3a.

There are tests that have to be performed at run-time: for example, if an
object referenced by an object reference on top of the operand stack implements
a certain interface or not [Fong2-WWW]. These are not considered part of the
pass four verification.
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4 Implementation of the Verification
Passes

Occasionally, the behaviour of other verifier implementations was explained in
section 3. This is not a mistake; the Java Virtual Machine Specification, Second
Edition [VMSPEC2] is unfortunately not detailed enough to make a clean-room
implementation of the JVM verifier possible. Having a close look at the be-
haviour of existing verifier implementations is sometimes necessary to interpret
the specification correctly. For that reason, the behaviour of these implementa-
tions is part of the specification of Justlce whereever appropriate. Still, there
are some minor differences in behaviour between Justlce and the traditional
JVM built-in verifiers. These differences were observed by using the traditional
verifiers, not by inspecting their source code.

JustIce is implemented in the Java programming language [langspec2| using
the Byte Code Engineering Library [BCEL-WWW, BCEL98|.

4.1 Pass One

The Byte Code Engineering Library (BCEL) presents an object oriented view
of the class file structure. Therefore, an integral part of that library is parsing
class files. Justlce uses the BCEL, so there was nothing left to do to load
a class file in. Only minor changes were made to the BCEL to make it more
verbose when exceptional situations occur; i.e., when a garbled class file is loaded
in. The BCEL uses Java’s exception mechanism to signal these situations;
Justlce transforms this behaviour into the behaviour expected by users of the
Verification API (see section 5).

Comparison to Sun’s Implementation

There does not seem to be any difference in behaviour between Justlce and the
traditional verifiers. Still, this conviction is a result of black box tests so it
might not be true in corner cases.

Unknown attributes are ignored (though JustIce records a warning message,
where the traditional verifiers don’t).

Trailing bytes at the end of the class file are ignored in both versions, con-
tradicting the specification. This was necessary because some Java run-time
environments are broken concerning the handling of .JAR archive files. The
mechanism of loading class files from these archives files using the Java Plat-
form’s API is used by BCEL and probably by Sun’s JVM, too. It is possible
that this is the reason why Sun’s verifier itself does not enforce this constraint.

43



4 Implementation of the Verification Passes

However, it does not really pose a threat to the integrity of any JVM known
to the author. There is no entry in the ClassFile structure (see section 2.1)
stating how long the class file is in its entirety, so a JVM implementor cannot
possibly base a wrong decision on that.

4.2 Pass Two

JustIce does perform “all verification that can be performed without looking at
the bytecodes” in pass two. For some reasons (like determining a valid ancestor
hierarchy of a class), pass two of Justlce has to load referenced classes. Of
course, this is done in a careful way: by pass-one-verifying them. If loading of
a referenced class should fail (i.e., verification pass one fails on this class), the
referencing class is rejected by Justlce’s pass two. Pass two of Justlce does not
pass-two-verify any referenced classes.

Also, JustIce’s pass two emits a wealth of (warning) messages. Their target
is to guide a bytecode engineer to create class files that are indistinguishable
from those created by Sun’s javac compiler with no debugging output. For ex-
ample, the use of LineNumberTable attributes (see section 2.1.1) is discouraged,
because these atributes are only useful for debugging purposes. Still, they can
be the reason for a class file to be rejected — to be on the safe side, finished
applications for the JVM should not be shipped with this debug information.

Most of the checks of pass two were implemented using the Visitor program-
ming pattern [DesignPatterns| provided by the BCEL’s de.fub.bytecode.classfile
API. This made it possible to have all the verification split into several methods
without having to define artificial boundaries. For instance, a ConstantValue
attribute is verified in a method called visitConstant Value(Constant Value). This
is a use of the object oriented view of class files the BCEL offers.

Comparison to Sun’s Implementation

JustIce does not distinguish between run-time or link-time because it was not
intended to implement a JVM. Therefore, the notion of resolving (see section
3.2) is useless for JustIce. The author believes that the specification of pass two
given by Sun closely reflects their implementation (or the other way around)!.

Sometimes, there are ambiguities in the specification. For instance, it is
said that “If the constant pool of a class or interface refers to any class or
interface that is not a member of a package, its ClassFile structure must
have exactly one InnerClasses attribute in its attributes table”. A class or
interface that is “not member of a package” is better known as a nested class
or inner class [InnerSpec|, but this is something specific to the Java language.
The javac compiler creates multiple, often funny-named? class files that are

!The Java Virtual Machine Specification, Second Edition, began as an internal project doc-
umentation ([VMSPEC2], page xiv). Unfortunately, this can still be felt sometimes.

2For anonymous classes defined in a class X the names are X$1, X$2 and so on. For a named
inner class I defined in class C' the name is C$I. There is, however, no guarantee for that:
this is only observed behaviour of javac. Please see section 7.2.1 for an example how this
behaviour can lead to unexpected problems.
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otherwise indistinguishable from normal class files.

Therefore, it is generally not possible to decide if such an attribute is miss-
ing; therefore Sun’s implementation does not check this constraint. Justlce, in
contrast, uses its warning mechanism if the name of a referenced class or inter-
face could be a name of an inner class created by the javac compiler and the
InnerClass attribute is missing.

The sets of accepted or rejected class files concerning pass two are equal
using both Sun’s implementation and Justlce, as exhaustive tests show. This
can, however, not be proven because one would need to analyze Sun’s source
code for that (which is not intended: as already mentioned, Justlce is a clean-
room implementation).

4.3 Pass Three

4.3.1 Pass 3a

One feature of the BCEL’s de.fub.bytecode.generic package is parsing code at-
tributes of methods and transforming them into so-called InstructionList ob-
jects. Consequently, this feature is used to implement pass 3a; a few additional
checks have been implemented where BCEL is too “trustful” when parsing, i.e.,
where BCEL relies on the correctness of the class file.

Pass 3a consists of the checking of static constraints on instructions and
static constraints on operands of these instructions. The successful creation
an an InstructionList object already implies that the static constraints on
instructions are satisfied. Similar to pass one, Justlce transforms the behaviour
of BCEL’s exception mechanism into the behaviour expected by users of the
Verification API (see section 5).

The de.fub.bytecode.generic API provided by BCEL offers a Visitor design
pattern similar to the one of the de.fub.bytecode.classfile API. The tests for
the static constraints on operands of instructions are implemented by using it.
For example, the constraints put on the operands of any iload instruction are
verified using a visitILOAD(ILOAD) method defined in a Visitor class. This
Visitor class implements all the checks for integrity of all instruction’s operands.
Algorithm 7 shows the impementation of the visit/ILOAD(ILOAD) method.

JustIce does not provide any run-time, so the tests of pass four (see section
3.4) are not delayed until run-time, but performed here.

Comparison to Sun’s Implementation

Sun does not distinguish pass 3a and pass 3b. However, Sun’s verifiers also have
to ensure that the static constraints on instructions are satisfied before starting
data flow analysis.

This is obvious because a data structure has to be built before the data flow
analyzer can be run; and this data structure has to be built carefully® because
passes one and two did not look at the bytecodes before.

3This actually means verifying the structural integrity of the bytecodes.
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Algorithm 7 visitILOAD, Visitor ensuring static constraints on operands of

instructions
/** Checks if the constraints of operands of the said

instruction(s) are satisfied. */
public void visitILOAD(ILOAD o){
int idx = o.getIndex();
if (idx < 0){
constraintViolated(o, "Index ’"+idx+"’ must be

non-negative.");
}
elseq{
int maxminusl = max_locals()-1;
if (idx > maxminusi){
constraintViolated(o, "Index ’"+idx+"’ must not be greater
than max_locals-1 ’"+maxminusi+"’.");
}
}
}

JustIce does implement pass four checks in pass 3a which Sun’s verifiers do
not. Because Justlce provides no run-time, the outcome of a verification failure
is reported instantly. Traditional JVMs are required to silently delay the actions
triggered by that knowledge until run-time.

4.3.2 Pass 3b

Justlce aims at implementing Sun’s data flow analyzing algorithm as closely
as possible. First, a control flow graph is built — which implies analyzing a
method’s subroutine calling structure first.

After that an implementation of the core algorithm sketched by Sun Mi-
crosystems is started. Verification failure is internally signalled by the Java
exception handling mechanism which is then transformed to match the Verifi-
cation API (see section 5).

Subroutines

Subroutines are modeled as instances of the Subroutine interface. They pro-
vide the following methods (note that an InstructionHandle is the BCEL’s
programming handle to instruction objects and that X// is the common Java
notation for array of X):

e boolean contains(InstructionHandle)
Returns true if and only if the given InstructionHandle refers to an
instruction that is part of this subroutine,

e InstructionHandle[] getInstructions()
Returns all instructions that together form this subroutine,
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o int[| getAccessedLocalsIndices()
Returns an array containing the indices of the local variable slots accessed
by this subroutine (read-accessed, write-accessed or both); local variables
referenced by subroutines of this subroutine are not included,

e int[] getRecursivelyAccessedLocalsIndices()
Returns an array containing the indices of the local variable slots accessed
by this subroutine (read-accessed, write-accessed or both); local variables
referenced by subroutines of this subroutine are included,

o Subroutine[] subSubs()
Returns the subroutines that are directly called from this subroutine,

e InstructionHandle[| getEnteringJsrInstructions()
Returns all the JsrInstructions that have the first instruction of this sub-
routine as their target,

e InstructionHandle getLeavingRET()
Returns the one and only RET that leaves the subroutine.

Together with information from a simple analysis of the possible control flow
transfer of all the other instructions but ret (see section 3.3), a control flow
graph is built.

The Control Flow Graph

The control flow graph is a single instance with respect to a given method to
verify. It is defined by providing access to a set of contexts of instructions.
These are modeled as instances of the InstructionContext interface.

These instances enclose InstructionHandle objects (which represent an in-
struction in the bytecode), but they augment these objects with type informa-
tion (a set of Frames, see below) as needed by the data flow analysis algorithm.
Also, a method called getSuccessors() is provided that calculates the possible
control flow successors of a given InstructionContext instance.

The most notable method defined in the InstructionContext interface is,
however, the ezecute(Frame, ArrayList, InstConstraintVisitor, Ezecution Visi-
tor) method. This method is used to symbolically execute a given instruction.

The ArrayList argument is there to record the subroutine calling chain.
The properly-nested property of Justlce subroutines is exploited here: one can
simply count jsr/jsr_w and ret instructions, similar to counting opened and
closed braces in mathematical expressions.

A Frame is Justlce’s model of an execution frame: a local variables array
model together with an operand stack model. Every InstructionContezt instance
is augmented with such a frame (to be precise, a set of such frames as discussed
in the specification of subroutines, see section 3.3).

When frames are merged, the ezecute(Frame, ArrayList, InstConstraintVisi-
tor, ExecutionVisitor) method of some successor InstructionContext is called.
The Frame argument represents is the current type information of the prede-
cessing InstructionContext.
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Visitors

As in pass 3a, the Visitor pattern of the BCEL de.fub.bytecode.generic API is
also used in pass 3b. While it was used to verify the static constraints of pass
three in pass 3a, it is now used to verify the structural constraints.

Before an instruction X is symbolically executed, the corresponding visitX(X)
method is invoked on an InstConstraintVisitor instance. This instance is
there to verify all the preconditions are met to safely execute the instruction
X. The InstConstraintVisitor class therefore holds information about the
preconditions of all 212 valid Java bytecode instructions. A simplified version
of this Visitor’s visitILOAD(ILOAD) method is listed in algorithm 8.

Similarly, the ExecutionVisitor class contains information about the be-
haviour of every bytecode instruction. An instance of this class is used to model
the effect of the bytecode instructions on a Frame instance. Algorithm 9 shows
the visitILOAD(ILOAD) method of this Visitor.

Algorithm 8 visitILOAD, Visitor ensuring the structural (dynamic) constraints

of instructions
public void visitILOAD(ILOAD o){

int produce = o.produceStack(cpg);
if ( produce + stack().slotsUsed() > stack().maxStack() ){
constraintViolated(o, "Cannot produce "+produce+" stack

slots: only "+(stack().maxStack()-stack().slotsUsed())+" free
stack slot(s) left.\nStack:\n"+stack());

}
[...]

}

Algorithm 9 visitILOAD, Visitor symbolically executing instructions
/** Symbolically executes the corresponding Java Virtual Machine
instruction. */
public void visitILOAD(ILOAD o){
stack() .push(Type.INT);

}

Comparison to Sun’s Implementation

Justlce was originally aimed to be as compatible to Sun’s implementation as
possible. However, the unclear specification prevents clean room implementa-
tions (i.e., implementations whose programmers did not look into Sun’s code)
from perfect compatibility.

Fortunately, it JustIce closely matches Sun’s implementation in its behaviour.
As a test case, the author verified the transitive hull of the referenced class files
starting with the de.fub.bytecode.verifier. Verifier class. This set includes most of
the classes of the Java 2 API supplied by Sun Microsystems, i.e., a few hundreds
of apparently correct classes. A very small number of class files was rejected by
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Algorithm 10 Simplified Core Verification Algorithm of Pass 3b

public VerificationResult do verify(Method m){
ControlFlowGraph cfg;
if (m.hasCode())
cfg = new ControlFlowGraph(m)
else
return Good_ VerificationResult;
Frame f = new Frame(); // local variables and operand stack
f.localVariables().initialize(m.signature()); // put formal param types into loc. vars
InstConstraintVisitor icv = new InstConstraintVisitor();
ExecutionVisitor ev = new ExecutionVisitor();

tryq{
circulationPump(cfg, f, icv, ev);

catch(VerificationFailure){
return Bad VerificationResult;

}

return Good_ VerificationResult;

}

public void circulationPump(ControlflowGraph cfg, Frame startFrame, In-
stConstraint Visitor icv, ExecutionVisitor ev) throws VerificationFailure{
Instruction start = cfg.getFirstInstruction();
/*
Now merge the first frame (type info) into the first instruction.
Empty list -> no instructions have been executed before.
*/
start.execute(startFrame, EmptyInstructionList, icv, ev);
/*
Q is a Queue of pairs (Instruction, InstructionList).
*/
Queue Q = EmptyQueue;
/*
Put the first instruction into the queue. This is similar to initializing a breadth first
search.
*/
Q.add (start, EmptyInstructionList);
/*
The main loop
*/
while (Q.isNotEmpty()){
Instruction u = fst(Q.head());
InstructionList ec = snd(Q.head());
Q.removeHead();
InstructionList oldchain = ec;
InstructionList newchain = ec++][u];
for (all successors v of u){
/*
execute returns true if type info has changed. It may throw VerificationFailures.
*/
if (v.execute(u.getOutFrame(oldchain), newchain,icv,ev))
Q.add((v, newchain));
}

}
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JustIce because of its different specification of subroutine constraints. No other
rejects were encountered.

Most class files that are found to be rejected by Sun’s verifier implementa-
tions are rejected by Justlce, too.

However, there are class file rejected by Sun’s verifier implementations but
not by Justlce. This should not occur, but JustIce does not mimic the program-
ming errors of Sun’s verifiers so far. Please see section 7.2.2 for a discussion on
a selected incompatibility issue.

An automated testing suite could solidify the trust in Justlce’s implementa-
tion which is not implemented yet. Please see section 6.3.1 for a discussion on
that topic.

4.4 Pass Four

The tests Sun’s verifiers perform during run-time but which in principle could
be performed in pass three are performed in pass 3a by Justlce.

Comparison to Sun’s Implementation

It sems natural that Sun’s verifier implements the specification by Sun. Ob-
viously, JustIce has no run-time so Justlce has no pass four. The checks Sun
performs in pass four* are performed in pass 3a by Justlce.

4Some JVMs expose implementation mistakes concerning pass four verification. See section
7.2.2.
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5.1 Introduction

The Application Programming Interface (API) of Justlce uses object oriented
design patterns [DesignPatterns|. Readers not familiar with design patterns are
encouraged to read at least about the Visitor, Singleton, Observer and Factory
patterns.

Justlce currently consists of four packages: de.fub.bytecode.verifier, de.fub.
bytecode.verifier.exc, de.fub.bytecode.verifier.statics and de.fub.bytecode.verifier.
structurals. (We shall from now on omit the preceding de.fub.bytecode.) The
most important of them is the verifier package. The class VerifierFactory can
be found here; this is the place where all verification starts. The VerifierFac-
tory creates Verifier instances; only the VerifierFactory can create these
instances. A Verifier instance, in turn, has a one-to-one relationship with a
class file to verify, “its class”. You can instruct a Verifier instance to run a
verification pass on its class yielding a VerificationResult.

All class files are fetched from the BCEL’s class file repository, i.e., the class
Repository. The class files stored there are either put there by the user or they
are read from the file system. For a bytecode engineer who uses the BCEL this
is convenient, because one does not have to save the dynamically created class
file first in order to load it into Justlce.

Pass 1 and pass 2 are related to the ClassFile structure as such; passes 3a
and 3b verify the bytecode of a method. If a class file was created using the
BCEL, the BCEL user already knows how the JavaClass object looks like!.
The number of methods is known and the order of the methods in the class file
is known.

However, if this is not the case, one usually does not know the number of
methods in a class file or the order of these methods. To carefully extract this
information from an untrusted class file, one should first let a pass-2-verification
run on this file. Afterwards, the information can be read from the JavaClass
object the BCEL offers.

Finally, one is able to supply the “method index” needed by verification
passes 3a and 3b.

Basically, after pass 2 has been run successfully on a class file, one can safely
use the methods in the BCEL’s classfile package on that class file. After pass
3a has been run successfully on a method, one can safely work on that method
using the BCEL’s generic package. After pass 3b has been run successfully on
all methods in a class file, this class file will not be rejected by other verifiers.

'A JavaClass object represents a class file in the BCEL.
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5 The Verification API

Often, the run of a verification pass implies recursively verifying other class
files as well (because they are somehow referenced). Therefore, Verifier in-
stances for these referenced classes are created transparently. To be notified
when such an event occurs, one can implement the VerifierFactoryObserver in-
terface and let the VerifierFactory register your implementation.

A Verifier creates instances of PassVerifiers. A PassVerifier instance in charge
of performing some later verification pass transparently creates PassVerifier in-
stances for the preceding passes. Therefore, users of the Verification API do
not have to care about the order of verification passes; i.e., earlier passes are
run always before later passes. All verification results are cached; this way an
unsual order of calls to the doPassX() methods of the Verifier class does not
even waste computing time.

5.2 Some Example Code

The code below shows an example of how to use the API provided by Justlce.
It will verify the transitive hull of all referenced class files. Normally, while
verifying a class, referenced classes are recursively verified performing earlier
passes. Verifiers that are using pass 1 on their class will not load in any other
classes (see section 3). Therefore, normally the transitive hull is not verified
completely (it usually does not make sense to verify it, though — it’s done here
only to give an example of what can be done).

01 package de.fub.bytecode.verifier;

02 import de.fub.bytecode.verifier.x*;

03 import de.fub.bytecode.classfile.x*;

04 import de.fub.bytecode.*;

05 /*x

06 * This class has a main method implementing a demonstration program

07 * of how to use the VerifierFactoryObserver. It transitively verifies
08 * all class files encountered; this may take up a lot of time and,

09 * more notably, memory.

10 =

11 * Qauthor <A HREF="http://www.inf.fu-berlin.de/"ehaase"/>Enver Haase</A>
12 x/

13 public class TransitiveHull implements VerifierFactoryObserver{
14  /** Used for indentation. */

15  private int indent = 0;

16  /*x Not publicly instantiable. x/

17  private TransitiveHull(){ }

18

19 /* Implementing VerifierFactoryObserver. */

20 public void update(String classname)q

21 for (int i=0; i<indent; i++) {

22 System.out.print(" ");

23 }

24 System.out.println(classname) ;

25 indent += 1;

26 Verifier v = VerifierFactory.getVerifier(classname);
27 VerificationResult vr;
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Figure 5.2: Informal UML sequence diagram showing the dependency of verifi-
cation pass two on verification pass one.
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5.2 Some Example Code

vr = v.doPassi1();
if (vr !'= VerificationResult.VR_0OK)
System.out.println("Pass 1:\n"+vr);
vr = v.doPass2();
if (vr !'= VerificationResult.VR_0K)
System.out.println("Pass 2:\n"+vr);
if (vr == VerificationResult.VR_0K){
JavaClass jc = Repository.lookupClass(v.getClassName());
for (int i=0; i<jc.getMethods().length; i++){
vr = v.doPass3a(i);
if (vr !'= VerificationResult.VR_0OK)
System.out.println(v.getClassName()+", Pass 3a, method "+
i+" [?"+jc.getMethods () [1]+"’]:\n"+vr);
vr = v.doPass3b(i);
if (vr !'= VerificationResult.VR_0K)
System.out.println(v.getClassName()+", Pass 3b, method "+
i+" [’"+jc.getMethods() [1]+"?] :\n"+vr);

X
X
indent -= 1;
This method implements a demonstration program

of how to use the VerifierFactoryObserver. It transitively
verifies all class files encountered; this may take up a
lot of time and, more notably, memory.

public static void main(String[] args){

}

if (args.length != 1){
System.out.println("Need exactly one argument: The root class
to verify.");
System.exit(1);

}
int dotclasspos = args[0].lastIndex0f(".class");
if (dotclasspos != -1)

args[0] = args[0].substring(0,dotclasspos); args[0] =

args[0] .replace(’/?, 7.7);
TransitiveHull th = new TramsitiveHull();
VerifierFactory.attach(th);
VerifierFactory.getVerifier(args[0]); // the observer is called
back and does the actual trick.
VerifierFactory.detach(th);

First, an instance of the TransitiveHull class is created in line 62. Note that this
class implements the VerifierFactoryObserver interface.

A reference to the newly created instance is then passed to the VerifierFactory
in line 63 by invoking its attach(VerifierFactoryObserver) method. After registering
the new observer, the VerifierFactory will call the instance’s update(String) method
(defined in lines 20-46) whenever a new Verifier instance is created.
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5 The Verification API

To trigger the verification, a first Verifier instance is fetched from the Verifier-
Factory. Because it is the very first Verifier instance that is fetched, we know that
it has to be newly created. This is done in line 64. This instance is not used in the
main(String[[) method; but its creation leads to a invocation of the wupdate(String)
method which is defined in lines 20-46.

There, the name of the class to verify is printed (lines 21-25, line 45) and
the four verification passes provided by Justlce are run. Note that one has to be
careful not to try to verify a method that does not exist. Justlce would in this
case throw an InvalidMethodException. Therefore, after successfully verifying
that the structure of the class file to verify is well-formed (verification up to
and including pass two, lines 26-31), the number of methods is fetched from the
corresponding JavaClass object. (It is necessary to perform verification pass
two on a class file to safely find out how many methods are defined in this class
file.)

After determining the number of methods, these methods are verified per-
forming passes 3a and 3b on them (lines 32-44).

By applying all verification passes on some class file C| all class files ref-
erenced by C are found. Therefore, new Verifier instances are created which
are responsible for them. Because of that, the update(String) method described
above is called for every referenced class. This is a recursive loop; the program
terminates when there is no referenced class left to be verified.

The example above is simple yet powerful. Admittedly, it is of limited use
to verify classes provided by the JVM vendor; therefore one would not normally
verify all the transitive hull of referenced class files. However, a common use is
verifying all classes of a project. Inserting a new line between line 20 and 21
like

if (!(classname.startsWith(‘‘de.fub.bytecode.verifier’’)) return;
would easily accomplish this goal if Justlce itself is the project to verify and all
the project’s class files are referenced by another class file in the project.

5.3 An Application Prototype

The API of JustIce is used to offer bytecode engineers an opportunity to create
their own application programs. However, this dimension of configurability is
often not needed.

JustIce comes with an application prototype which provides an easy-to-use
user interface. Figures 5.3 and 5.4 show screen shots of this prototype built
on the Justlce verifier. The boxes to the right contain verification information.
From the top to the bottom the boxes represent the verification passes one, two,
3a and 3b and the warning messages, respectively.
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6 Conclusion

6.1 What Was Achieved

About a third of the development time of Justlce was spent examining the var-
ious issues in connection with subroutines, i.e., issues concerning the bytecode
instructions jsr, jsr_w and ret. This led to a new definition of the term sub-
routine (section 3.3.2)!, a new implementation of this verification area (section
4.3.2) and a discussion on the arising incompatibilities (sections 4.3.2 and 7.2.2).

Only a few different verifier implementations exist at all, and most of them
are incomplete. Justlce is a complete class file verifier implementation including
a bytecode verifier.

The development of Justlce also led to improvements of the Byte Code En-
gineering Library [BCEL-WWW, BCEL98|. For instance, the returnaddress
data type was introduced there. It was modeled as a parameterized type. Also, a
programming error was repaired that led to inconsistent treatment of exception
handlers in the BCEL.

The control flow graph used by Justlce can also be used in other projects;
the Verification API provides access to this data structure?. Only because of
the clarification of the subroutine issues could such a data structure be defined
statically.

As an Open Source project, Justlce provides algorithms which may be re-
used in own projects. For example, every compiler targeting the JVM has to
calculate the maximum amount of stack memory used by a method. This is also
done by JustIce.

Finally, the need for a discussion on the meaning of Java security was iden-
tified (see section 6.3.4).

6.2 What Could Not Be Achieved

6.2.1 A Constraint Database

Efforts have been made to make Justlce verifier highly configurable. Unfor-
tunately, this could not be accomplished by the author. For instance, it was
planned to build a constraint database which would make it possible to turn on
or off single checks during verification.

'A request for clarification of the subroutine issue, sent to the electronic mail address
jvm@java.sun.com was not answered.

2A ControlFlowGraph instance can be created by invoking the ControlFlowGraph(Method-
Gen) constructor. A MethodGen is the BCEL’s representation of a method.
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While this might be possible in some cases, in general the constraints of
the class file verifier are highly intertwined. For instance, without a well-formed
constant pool one could not run the data flow analyzer in a sane way. As another
example, if a user preferred not to care about stack underflow the verification
algorithm would require complicated user interaction; i.e., the user would have
to decide what type to put onto the simulated operand stack just before it is
read.

One could model the interdependencies of the various constraints and allow
only groups of checks to be turned on or off together. However, the author
doubts this could be done in a way that is not prone to errors and that can be
validated easily.

This is also the reason why only one error is reported if verification fails.
Trying to continue verification and find more constraint violations leads only to
consequential verification errors.

Justlce implements caching of verification results. If a bytecode engineer
works on a class file and needs to run Justlce several times against it, Justlce
will cache the verification results of the recursively referenced class files. Because
of this, Justlce will be fast every subsequent time it is used to verify the class.
This minimizes the impact of the above shortcomings.

6.2.2 A Perfect Verifier

Justlce does not implement a perfect verifier. Some class files with code that
is safe to execute are rejected. Unfortunately, there has to be some degree of
uncertainty concerning which class files to reject.

The JVM performs initialization of class files after loading and verifying
them without error. This includes running the code in the special class initial-
ization method called <clinit> if it exists (see [VMSPEC2|, page 53). For the
correct operation of the JVM it is important that this method does not contain
an infinite loop. Verifying if this constraint is true is similar to the Halting
Problem and therefore not generally computable [Unknowable]. A verifier has
to omit the check and pass potentially unsafe class files.

For another example, consider algorithm 11 below.

Algorithm 11 Rejected class

public static int always_true()

Code(max_stack = 1, max_locals = 1, code_length = 2)
0: icomnst_1 ; push constant 1 onto stack

1: direturn ; return constant 1 (‘“true’’)

public static void good_method()
0: invokestatic NewClassO.always_true ()I (18)
; Push ‘“true’ on stack

3: ifne #10 ; If ‘““true’ is on stack jump to 10
6: pop ; Pop a value off the stack

7: goto #6 ; jump to 6

10:return ; complete method
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This code is harmless, because lines 6 and 7 can never be executed (it would
underflow the operand stack in an infinite loop). A class file with this code is
rejected by Justlce and other verifiers, because the endless loop seems to be a
malicious threat to the integrity of the JVM.

We conclude that there cannot be a perfect verifier. All that could be done
is reduce the degree of uncertainty. For practical purposes, i.e., to be compatible
with Sun’s implementation, one should not even do that.

There is also a simple proof showing a perfect verifier does not exist in [JNS],
chapter 6. It uses a diagonalization argument.

6.3 Future Work

Class file verification is an integral component of Java security; and application
programs running on the Java Virtual Machine are often used in security critical
areas. Several security holes and flaws have been found both in implementations
and the specification of the Java class file verifier since it was introduced.

Recently, the area has experienced a leap as a theoretically founded, sound
and complete Java environment was defined in [JBook]. Possibly Sun’s engineers
will use this work to improve Java and the Java verifier. Justlce will have to
change to always keep close to the industry standard.

But Justlce itself can also be improved concerning practicability, and new
software can be developed on top of the Verification API.

6.3.1 Improvements to Justlce

Introduction of Unique Identifers for Verification Results and Warning
Messages

Currently, warning messages and verification results are conceptually text-based.
Only VerificationResult objects include a numeric value which programs can use
to decide if some class verification failed or not. A program like the prototype
introduced in section 5.3 can currently not hide specific messages from the user
without parsing text. This limitation should be removed in the future by using
unique message numbers. This would also make translation of the messages into
other languages easier.

A New Verification Strategy

The core verification algorithm cited in section 3.3.2 works by generalizing the
knowledge about an object type along the inheritance hierarchy.

For instance, let there be an object of type java.util.AbstractList on
the simulated stack of some modeled instruction. Let there be a loop so that
the algorithm has to visit that same instruction again, this time with an ob-
ject of type java.util.AbstractSet in that same stack slot. The verifier will
compute the meet of the two types and record that there is some object of type
java.util.AbstractCollection in that stack slot.
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Remember that the instruction will be marked with a changed bit until no
such re-typing change occurs any more (JustIce will actually put it into a queue).

This approach does not work very well when it comes to interface types
instead of class files. For example, the meet of a java.lang.Integer and a
java.lang.Double is a java.lang.Number because java.lang.Number is the
first common super class. Both classes also implement the java.lang.Com-
parable interface, but java.lang.Number does not. This information is lost
when replacing the type information. However, current verifiers do not reject
the class files but make additional run-time checks necessary.

Fong noticed that this could be the reason for the invokeinterface opcode
to be underspecified [Fong2-WWW]| (also see section 7.2.1).

Stark et al. suggest the use of sets of reference types instead ([JBook]|, pages
229-231). This could also be implemented in JustIce.

Keeping up with Specification Clarifications

As a clean-room implementation, Justlce depends on the clearness of the spec-
ification. Ambiguities could lead to programming errors.

Here we give one example: methods can be inherited in Java (for example,
the method clone() is declared in the java.lang.Object class and therefore
inherited by every other class).

Let a class A be a subclass of java.lang.0bject and let class B be a subclass
of A. Also, let class B override the definition of clone() with an own implemen-
tation.

If javac compiles a Java program that invokes this method, it is either refer-
enced as java.lang. Object::clone() or as B::clone(). However, because A inherits
this method, the reference A::clone() is legal, too.

In The Java Virtual Machine Specification, Second Edition ([VMSPEC2]|,
page 291) it is said that the reference must be a “symbolic reference to the class
in which the method is to be found”. Statically, the method clone() can of course
not be found in class A. One could therefore think the reference A::clone() was
not legal.

In the meanwhile, Sun’s engineer Gilad Bracha clarified this issue: “Of
course. This is discussed in JVMS 5.4.3.4, which describes interface method
resolution. I don’t see the text on page 280 as contradicting that. The symbolic
reference does give an interface in which the required method can be found,
albeit as an inherited member. We could try and reword it in a more precise
way, to eliminate any misunderstandings.”

Keeping up with clarifications like this is an inevitable and on-going part of
the development of JustIce.

Keeping up with Java Extensions

Recently, Sun Microsystems introduced a new attribute: the StackMap attribute

which is an attribute local to the Code attribute (see section 2.1.1). It was
specified in [J2ME-CLDCS].
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It is there to provide “limited devices” that perform a one-pass verification
with type information that would normally have to be inferred by the verifier.

It is not used by the verification algorithm of Justlce now: it’s currently an
unknown attribute to Justlce.

Detecting Local Variable Accesses out of Scope

The LocalVariableTable attribute is a debug information attribute. Basically,
it gives debuggers information about the original (source code) name and type
of a given local variable.

JustIce builds data structures to warn if it detects contradicting and over-
lapping areas; e.g., if some local variable is anounced to carry an int value and
a float value at the same time.

It could also be interesting to warn if a local variable is accessed for which
no debug information exists. This is currently not implemented.

Extending the Verification API

Justlce can easily be extended to run certain analyses related to symbolic byte-
code execution.
This includes the computation of the maximum number of used operand
stack slots in a method or the computation of unused local variables in a method.
These analyses are normally costly to implement®, but they are a waste
product of the verifier’s core algorithm.

A Verifier Validation Suite

The Kimera project [Kimera-WWW] was the first known project to implement
a stand-alone Java verifier. The people behind the project had to test the
behaviour of their verifier against the behaviour of the previous implementa-
tions. Tests have been run in order to validate the Kimera verifier. These tests
range from simply introducing random one-byte errors into class files and au-
tomatically running Kimera against other verifiers to elaborate research work
[Kimera-ProdGram, Kimera-Testing VM].

Currently, Justlce comes only with a very limited possibility of running test
cases against the native verifier of the host machine’s JVM. The pioneering work
of the Kimera project could be used to implement a validation suite for Justlce.

6.3.2 A Verifier Protecting an Intranet

Often, Java Virtual Machines are built into software used to browse the World
Wide Web such as the KDE project’s Konqueror [KDE] or Mozilla.org’s Mozilla
[Mozilla] products. Such Internet technology is also often used in corporate
networks. Corporate networks based on internet technology are called intranets;
these networks are normally protected from the Internet by a so-called firewall
computer.

30ften, heuristics are used such as the method MethodGen.getMaxStack() in the BCEL
[BCEL-WWW, BCELYS|.
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This computer’s task is to provide access to the internet only to privileged
employees and —even more important— it blocks access from unauthorized per-
sons outside the intranet. The firewall machine is a single, bi-directional point
of access.

However, normally web-browsing is considered harmless, so that the em-
ployees can unrestrictedly gather information, possibly visiting Java-enabled
web sites. The JVMs built into the browser software run software downloaded
from the World Wide Web; while the the built-in verifiers make sure that no
dangerous code can be executed.

Let us assume someone discovered a security hole in the verifier implementa-
tion or implementations that are used on the corporate network’s workstations;
let us also assume a patch exists that would fix the problem.

A system administrator would have to spent a lot of time to repair every
single verifier. A cheaper solution would be a verifier built into the firewall ma-
chine; such a verifier can easily be implemented using JustIce and its Verification
APIL

6.3.3 A Java Virtual Machine Implementation Using Justice

The Java verifier is originally a part of the Java Virtual Machine. Justlce
could also be part of a Java Virtual Machine. JustIce’s class files (the program
code Justlce consists of) could simply be integrated into the core Java class
files. The execution engine would then run Justlce without actually verifying
Justlce’s class files themselves.

For scientific purposes one could also implement a JVM in the Java pro-
gramming language. Such an implementation could, for example, serve as a
debugger.

6.3.4 Drawing a Clear Line Between the Principle of Information
Hiding and Security

The principle of information hiding has been (and still is!) a practice of experi-
enced programmers for many years. It is there to reduce programming errors.

In the Modula-2 programming language [M2] this is achieved by explicitely
dividing the program code in definition modules and implementation modules.
In older programming languages, such as in the C programming language [C],
this principle is implicitely used, too. Basically this is achieved by defining
interfaces that only describe what the code of a program module does. These
interface “headers” are included into user code instead of simply including the
code itself.

In object-oriented programming languages such as in Delphi [D3], C++
[CPP-D, CPP-E] or Java [langspec2], this principle is refined to what is called
object encapsulation. When a class is defined, certain key words such as private,
protected, friend, public, published set the access rules for the members*
of an object of the given class.

“The members of a class are its components: methods (program code) and fields (also called
attributes or variables).
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Still, this refined technique does not have anything to do with security. It is
only there to aid programmers create a reasonable design. If every piece of code
could manipulate every data structure, one would not know where to look for
a programming error in the program source code. On the other hand, if some
field is private in C++, one could (with some knowledge about the compiler
used) still reference and modify this field by pointer manipulation. In addition
to that, a second program like a debugger could watch even the data of private
fields.

However, when a Java program is compiled into the language of the JVM,
the information about the access rights of the fields and methods is included.
This is where the principle of information hiding is exploited to provide security.
For example, the verifier of the JVM has to make sure private fields are never
accessed from a foreign piece of code. But there are many implementations
of the JVM which have security flaws such as not honouring the access rights.
There are debuggers for JVM bytecodes, too.

When one thinks about security, one has to think of some enemy who could
try to harm the computer or information stored on that computer. From a JVM
user’s point of view, the JVM is relatively secure. Even running untrusted code
cannot do much harm. Because the security flaws in different JVM implemen-
tations differ, they are probably not exploited most times.

From a Java programmer’s point of view, the JVM is not secure. Untrusted
users can do much harm. For example, an online banking application storing
important data in Java fields (such as access information to the bank’s database
management system) is a threat to both the bank and its customers. This
information could easily be extracted by a malicious user.

Another problem for Java programmers is the amount of symbolical infor-
mation stored in class files. Today, it is easy to de-compile a Java class file
back to Java language source code [JODE-WWW]. This source code can then
be read and analyzed by the user. Facing this problem, the “only safe course
of action is to assume that ALL Java code will at some point be decompiled”
(|[JNS], page 68).

We conclude that the principle of information hiding is not enough to pro-
vide a degree of security that both —users and programmers— could accept.
Programmers should not believe a good design makes a program secure.
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7 Appendix

7.1 History of Justlce

The author of Justlce once started to implement a class file decompiler like
Jode [JODE-WWW]. It soon became clear that to successfully implement it,
one should exploit the “well-behaved” property of class files (which essentially
means that they pass a verifier, especially pass three) [Krakatoa-WWW].

JustIce was then developed to understand the “well-behaved” property of
usual class files. It took much longer to complete than estimated because of the
many inherent bugs and ambiguities in The Java Virtual Machine Specification,
Second Edition [VMSPEC2].

Its name starts with a J like Java does, referring to the tradition of giving
Java-related software such names. The second part of the name, ICE, was
inspired by a novel by William Gibson [Neuromancer|. It is an acronym for
Intrusion Countermeasures Electronics, something that is very much like today’s
firewall systems (see section 6.3.2). He credits the invention of ICE to Tom
Maddox. The missing three letters were inserted to create a word that makes
sense; in fact, choosing the three-letter combination ust resulted in the creation
of a word with a double sense via bi-capitalization.

Justlce was written using and extending the excellent Byte Code Engineering
Library [BCEL-WWW, BCEL98] by Markus Dahm. It really helped a lot and
sped up development time.

It was also —last but not least— written to earn its author a German Dipl.-
Inform. degree which one may compare to a master degree.

7.2 Flaws and Ambiguities Encountered

While designing, implementing and testing Justlce, a lot of interesting flaws
and ambiguities were found in the specification [VMSPEC2], the Java compiler
javac and the JVM java.

7.2.1 Flaws in the Java Virtual Machine Specification

The Java Virtual Machine Specification, Second Edition was derived from an
in-house document describing the as-is implementation of Sun’s genuine Java
Virtual Machine ([VMSPEC2]|, page xiv). This sometimes leads to problems as
there are still a few points left where Sun’s engineers forgot to describe speci-
fication details to the public, in error assuming they would be implementation
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details. Another source of mistakes are ambiguities, inherent to natural lan-
guages auch as English.

A Code Length Maximum of 65535 Bytes per Method

On page 152, The Java Virtual Machine Specification, Second Edition [VMSPEC2]
says that code arrays may at most have a length of 65536 bytes because certain
indices that point into the code are only 16 bits of width. Page 134 states the
code must have ,less than“ 65536 bytes. Therefore, the limitation stated on
page 152 is not helpful, but only confusing.

Subroutines

The implementation of a provably correct verifier is not possible because of
the ambiguities in the specification [VMSPEC2|. To reach this goal, various
efforts have been made to describe the verifier and the JVM formally [Qian,
StataAbadi, FreundMitchell, JBook, JPaper|. By restricting the code javac
produces or by redefining the verifier’s behaviour, however, they are never one-
to-one with the behaviour of the existing JVMs.

Sun’s specification does not define the term subroutine although it is used.
Instead, it is explained what bytecode the Java compiler generates when a
finally clause appears in the Java language source code — this definitely does
not belong there, because a verifier must never assume the code it verifies was
created by Sun’s javac compiler.

Clarifying this issue could lead to an official formal specification.

The Specification Sometimes Satisfies the Verifier

Fong [Fong2-WWW]| found in 1997 that the invokeinterface opcode was un-
derspecified in the first edition of the Java Virtual Machine Specification. He
managed to create a class file that did not implement a specific interface but
nevertheless used invokeinterface to invoke a method. This class file passed
the verifier (up to pass three), but the JVM found the problem during run-time
(pass four). Fong concluded that the omission in the specification was done on
purpose because the implementation of the data flow analyzer does not allow
to check this constraint (please see section 6.3.1 for a description of how this
limitation could be overcome). However, in The Java Virtual Machine Speci-
fication, Second Edition [VMSPEC2], the specification of invokeinterface is
corrected.

Still, there is another case where one would suspect the specification de-
scribes the behaviour of the verifier: on pages 147 and 148 of the specification
[VMSPEC?2]|, verification of instance initialization methods and newly created
objects is explained. “A valid instruction sequence must not have an unini-
tialized object on the operand stack or in a local variable during a backwards
branch, or in a local variable in code protected by an exception handler or a
finally clause”. Note that the Java language keyword finally does not really
belong here (Sun should speak of subroutines), but more important is that this
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specification is made to satisfy the verification algorithm: “Otherwise, a devious
piece of code might fool the verifier”.

The '$’ Character as a Valid Part of a Java Name

Because the javac compiler may create class files with a ’$’ character in their
names as a result of Java source files defining inner classes, this character should
no longer be a valid part of a Java name to avoid problems. I.e., the method in-
vocation java.lang. Character.isJavaldentifierPart(’$’); should return the value
false.

7.2.2 Flaws in the Implementation of the Java Platform

Sun’s Verifier Rejects Code Produced by Sun’s Compiler

Surprisingly, there are a number of examples in which such a thing happens.
Another Problem With Subroutines In [JPaper|, Stirk and Schmid give a
few code examples which are compiled correctly by the javac compiler but the
resulting code is rejected by the traditional verifiers. Algorithms 12 and 13 show

one of their examples given in the Java programming language and the resulting
output of the javac compiler.

Algorithm 12 Stark and Schmid’s Rejected Class, Java Language Version
class Test1{
int test(boolean b){
int 1i;
try{
if (b) return 1;
i=2;
}
finally {
if (b) i = 3;
}
return i;

}

If one tries to run this bytecode using a JVM by IBM Corporation, the code
is rejected!:
ehaase@haneman:/home/ehaase > java Testl
Exception in thread "main" java.lang.VerifyError:
(class: Testl, method: test signature: (Z)I)
Localvariable 2 contains wrong type

In his lectures, Stérk explains that the problem lies in the polymorphic na-
ture of JVM subroutines [JLectures|. Consider algorithm 13. In line 12, an int

't is also rejected by Sun’s JVMs and the Kimera verifier [Kimera-WWW].
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Algorithm 13 Stirk and Schmid’s Rejected Class, JVM Bytecode Version

int test(boolean argl)

Code (max_stack = 1, max_locals = 6, code_length = 39)
0 iload_1

1: ifeq #11
4: iconst_1
5: istore_3
6: jsr #27

9 iload_3
10: ireturn
11: iconst_2
12: istore_2

13:  jsr #27
16: goto #37
19: astore %4
21: jsr #27
24: aload %4
26: athrow
27: astore %5
29: iload_1

30: ifeq #3b
33: iconst_3
34: istore_2
35: ret %5

37: iload_2
38: ireturn
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is put into local variable number 2. The subroutine starting at line 27 is then
called from line number 13. Note that this subroutine accesses the local vari-
able number 2. Finally, line 16 transfers control to line 37 where the verification
problem occurs. An int should be read from local variable number 2, but this
is marked unusable, because it was accessed in the subroutine.

However, the specification ([VMSPEC2]|, page 151) states:

e For any local variable that [...] has been accessed or modified by the
subroutine, use the type of the local variable at the time of the ret.

e For any other local variables, use the type of the local variable before the
jsr instruction.

As one can see, in the above example local variable number 2 holds an int data
type in both cases; there is no need to mark it unusable. This is the reason
why JustIce does not reject the above bytecode, thus being slightly incompatible
with the behaviour of other verifiers.

The Maximum Method Length May Be Exceeded The javac compiler Sun
included in the Java Development Kit version 1.3.0 01 does not check for the
maximum method length of the code array in a Code attribute (see section
2.1.1). A test file containing 65000 lines like “System.out .println(‘*‘Test’’);”
was compiled, but the resulting class file was rejected by the verifier.

IBM Corporation’s jikes compiler does not even generate code, but it locks
up while compiling the test file.

A Compiler Issue Related to Inner Classes

The javac compiler has to name class files, even those of so-called anonymous
classes [InnerSpec].

This can cause problems: an inner class I defined in a class A will be com-
piled into a class file called A$Il.class. A Java class named A3l will also be
compiled into a class file named A$I. class overwriting the former class file. Be-
cause Sun did not forbid the ’'$’ character as a legal part of a Java identifier,
the javac compiler should use a more sophisticated naming scheme.

Pass Four is Only Partially Implemented

Pass four defines run-time tests for constraints that could also be verified in pass
three; it is only for performance reasons that these tests are delayed. Instead
of having all the tests in one place, they are unnecessarily spread “making the
validation of the verification algorithm itself extremely difficult” [Fong-WWW]|.
Risking security for better performance is often regarded as a bad decision. For
instance, in the

java version "1.3.0_01"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0_01)

Java HotSpot(TM) Client VM (build 1.3.0_01, mixed mode)
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Java Virtual Machine, the pass four check for access rights was uninten-
tionally omitted. Sadly, other vendors license Sun’s code and base their own
implementations on that code. Therefore, mistakes are often inherited through-
out the JVM vendors. The

java version "1.3.0"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)

Classic VM (build 1.3.0, J2RE 1.3.0 IBM build c¢cx130-20010626 (JIT
enabled: jitc))

Java Virtual Machine by IBM Corporation, for example, exposes the same
mistake.

7.3 Related Work

7.3.1 The Kimera Project

It is a misfortune that the Kimera [Kimera-WWW] project closed the World
Wide Web presence and that the source code of the Kimera verifier was never
released — it would have been quite interesting to see how that respected verifier
implementation deals with the problems arising concerning subroutine verifica-
tion.

However, Kimera is the single other stand-alone verifier besides Justlce the
author knows of. The people behind the project found important security
breaches in JVM implementations of various World Wide Web browsers.

Also, they validated their verifier implementation and published several pa-
pers on JVM implementation verification [Kimera-ProdGram, Kimera-TestingJVM].

7.3.2 The Verifier by Stdrk, Schmid and Borger

In [JBook], the authors define the Java programming language and the Java vir-
tual machine formally using Abstract State Machines (ASM). This also includes
the verifier; its specifications have also been implemented in the functional pro-
gramming language AsmGofer [AsmGofer|. This implementation is included on
the CD-ROM that accompanies the book.

The “JBook verifier” does not implement a complete class file verifier. It
currently only implements the bytecode verification. Its input files are not class
files itself, but a textual representation of class files in so-called Jasmin format
[JVM]. Therefore, this implementation is merely of theoretical interest.

It does, however, implement a bytecode verifier that is founded on a solid
theory. This theory could become the standard for the interpretation of the JVM
specification [VMSPEC2|. It could even change the specification to remove its
ambiguities.

There is also an unreleased version of this verifier implemented in the Java
programming language using the BCEL. This implementation, if it should ever
be released, promises a lot as it could combine usability and a solid theory.
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7.4 The GNU General Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.When we speak of free software, we are referring to
freedom, not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it. For example, if you distribute copies
of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps:

(1) copyright the software, and

(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE
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TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MOD-
IFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously and ap-
propriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the ab-
sence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program. You may charge a fee for the physical act
of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an appro-
priate copyright notice and a notice that there is no warranty (or else, saying
that you provide a warranty) and that users may redistribute the program un-
der these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.) These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole
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which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it. Thus,
it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program. In addition,
mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically perform-
ing source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for non-
commercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.) The
source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the exe-
cutable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating sys-
tem on which the executable runs, unless that component itself accompanies
the executable. If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program (or
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any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original licensor
to copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are im-
posed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution
of the Program. If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author /donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice. This section is intended
to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. Each version is given a distinguishing version number. If
the Program specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Foundation.
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10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for per-
mission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-
ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS
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Access modifiers In the Java programming language, the use of the keywords
private, protected, public (or the use of no keyword) defines the access
rights for data or program code (also called visibility). This information
is also used by the JVM: it is part of the class files. The most important
modifier is private which is used to globally deny access to a field or
method.

Access rights Access rights are granted or denied by the use of paccess modi-
fiers.

APl Applications Programming Interface. Such an interface is used to include
functionality of foreign program modules (often Java ppackages) into own
programs.

Debugger A program used to investigate the behaviour of another program.
Often used to find and remove programming errors, so-called bugs.

Descriptor A symbolic description of type information. In the JVM’s class files,
strings in UTF-8 format [Unicode| are used to describe type information.

Field A member of a Java object or class, also called variable or attribute.

Method A member of a Java object or class. Methods include program code
or they are abstract representatives for program code. A method can be
compared to a function in programming languages like C or Pascal.

Opcode Operation Code. This denotes an instruction in an assembly-like com-
puter language; to some people it means its binary representation.

Package A package is an entity used in both the Java programming language
and the Java Virtual Machine definition. It is used to group classes that
in the eyes of the programmer belong together. Package definitions have
impact on paccess rights granted to other classes.

Signature A method has a (possibly empty) set of arguments it expects, and it
has a return type (possibly the void type). The type information of the
arguments and the return type together is called signature. A signature
can be expressed in terms of a >descriptor.

Type A field or a method argument has a type such as int or String. In the
JVM’s context, all values are typed. Types can be expressed in terms of
a >descriptor.

79



Glossary

80



List of Figures

1.1
1.2

2.1
2.2

3.1
3.2

5.1
5.2

5.3

5.4

Concept of Class File Verification . . . . . . .. ... ... ...,
Venn diagram showing the operating domain of the Java verifier.

A Class File . . . . . . o s
Method Invocation Stack . . . . . . . . . . . ... ... ...

A Conventional Control Flow Graph . . . . . ... ... ... ..
A Control Flow Graph as Used by Justlce . . . . . ... ... ..

UML class diagram of the Verification APT . ... ... ... ..
Informal UML sequence diagram showing the dependency of ver-
ification pass two on verification passone. . . . . .. .. ... ..
Verification of the Mini.MiniParser class file. Verification is passed,
but Justlce suggests to remove unnecessary (debug information)
attributes. . . . . . oo L
Verification of the java.io.ObjectInputStream class file. Verifica-
tion is not passed because of an unsatisfied constraint related to
subroutines. . . . . .. L L Lo L

54

81



List of Figures

82



List of Algorithms

N SOt WND -

10
11
12
13

Use of Exception Handlers . . . . . . .. ... ... ........ 19
Methed fac in a class Faculty, Java programming language version 27
Method fac in a class Faculty, Java bytecode version . . .. . .. 28
Is This a Subroutine? . . . . . . . .. ... ... .. ... .. 36
One or Two Subroutines? . . . . .. .. .. ... .. .. ..... 37
Local Variables are Polymorphic in Subroutines . . . . . .. . .. 40
visitILOAD, Visitor ensuring static constraints on operands of

instructions . . . . . ... Lo Lo 46
visitILOAD, Visitor ensuring the structural (dynamic) constraints

of instructions . . . . . . ... L o Lo 48
visitILOAD, Visitor symbolically executing instructions . . . . . 48
Simplified Core Verification Algorithm of Pass3b . . . . ... .. 49
Rejected class . . . . . . . . . . ..o 60
Stark and Schmid’s Rejected Class, Java Language Version . . . 69
Stark and Schmid’s Rejected Class, JVM Bytecode Version . . . 70

83



LIST OF ALGORITHMS

84



Bibliography

[AppMag-WWW]|

[AsmGofer|

[BCELYS]

[BCEL-WWW]

[BCV-Soundness|

[C]

[CPP-D]

[CPP-E]

[D3]

[DesignPatterns|

[DragonBook|

AverStar’s AppletMagic(tm): Ada for the Java Virtual
Machine.
http://www. appletmagic.com

Joachim Schmid: AsmGofer.
http:/ /www.tydo.org

Markus Dahm: Byte Code Engineering with the BCEL
API. Freie Universitdt Berlin, Institut fiir Informatik.
Technical Report B-17-98.

Markus Dahm: Byte Code Engineering Library.
http://beel.sourceforge.net

Cornelia Pusch: Proving the Soundness of a Java Byte-
code Verifier Specification in Isabelle/HOL. Technische
Universitat Miinchen, Institut fiir Informatik.

http:/ /www.in.tum.de/ “pusch/

Brian W. Kerninghan, Dennis M. Ritchie: The C Pro-
gramming Language, Second Edition, ANSI C. Prentice-
Hall 1998, ISBN 0131103628.

Bjarne Stroustrup: Die C++ Programmiersprache.
Addison-Wesly-Longman, 1998, ISBN 3-8273-1296-5.

Bjarne Stroustrup: The C++-Programming Language,
Third Edition. Addison-Wesley 1997, ISBN 0-201-88954-
4.

Guido Lang, Andreas Bohne: Delphi 3.0 lernen. Addison-
Wesley-Longman 1997, ISBN 3-8273-1190-x.

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides:  Design Patterns FElements of Reusable
Object-Oriented Software. Addison-Wesley 1995, ISBN:
0201633612.

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers:
Principles, Techniques, and Tools. Addison-Wesley 1985,
ISBN: 0201100886.

85



Bibliography

[EF]

[£2j]

[Fong-WWW]

[Fong2-WWW]

[FreundMitchell]

[GCC-WWW]

[GI-WWW)]

[InnerSpec]|

[J2ME-CLDCS]

[TBook]

[JPaper]

[JLectures|

86

ElectricalFire.
http://www.mozilla.org/projects/ef/

Keith Seymour: 2j - Fortran-to-Java Compiler.
http://cs.utk.edu/f25/

Philip W. L. Fong: The mysterious Pass One, first draft,
September 2, 1997.

http:/ /www.cs.sfu.ca/people/GradStudents /pwfong/personal/

JVM/passl/

Philip W. L. Fong: A Flaw with the Specification of the
Invokeinterface Opcode.

http:/ /www.cs.sfu.ca/people/GradStudents /pwfong/personal/

JVM /invokeinterface/

Stephen N. Freund, John Mitchell: A Formal Framework
for the Java Bytecode Language and Verifier. Depart-

ment of Computer Science, Stanford University. Stan-
ford, CA 94305-9045. Appeared in OOPSLA ’99.

GCC, The GNU compiler collection.
http://gce.gnu.org

GJ. A Generic Java Language Extension.
http://www. cis.unisa.edu.au/ "pizza/qj/

Sun Microsystems: Inner Classes Specification.
http://java.sun.com/products/jdk/1.1/docs/quide/
innerclasses/spec/innerclasses.doc.html

Sun Microsystems: J2ME™ Connected Limited Device
Configuration Specification.
http://jcp.org/aboutJava/communityprocess/final /jsr030/

Robert Stdrk, Joachim Schmid, Egon Borger:
Java™ and the Java™ Virtual Machine. Springer-
Verlag 2001, ISBN 3-540-42088-6.

http:/ /www.inf.ethz.ch/ jbook/

Robert F. Stark, Joachim Schmid: Java bytecode verifi-
cation is not possible. ETH Ziirich, Department of Com-

puter Science 2000.
http:/ /www.inf.ethz.ch/ " staerk/pdf/jbv00.pdf

Robert F. Stérk: Java and the JVM: Definition and Ver-
ification (37-474).

http:/ /www.inf.ethz.ch/ jbook/eth37474/

http:/ /www.inf.ethz.ch/ " jbook/eth37474 /javaBV.pdf



[INS]

[JODE-WWW]

[JustIce]

[TVM]

[Kaffe- WWW]

[KAWA-WWW)]

[KDE]

[Kimera-WWW]

[Kimera-TestingJ VM]

[Kimera-ProdGram)|

[kissme-WWW]|

|[Krakatoa-WWW]|

Bibliography

Robert Macgregor, Dave Durbin, John Owlett, Andrew
Yeomans: JAVA™  Network Security. Prentice Hall
1998, ISBN 0137615299.

JODE is a java package containing a decompiler and an
optimizer for java.
http://jode.sourceforge.net

Enver Haase: Justlce. A Free Class File Verifier for
Java™ Freie Universitiit Berlin, Takustrafe 9, D-14195
Berlin; September 2001.

http://beel.sourceforge.net/
http://beel.sourceforge.net/justice

Jon Meyer, Troy Downing: JAVA Virtual Machine.
O’Reilly 1997, ISBN 1-56592-194-1.

Kaffe. Kaffe is a cleanroom, open source implementation
of a Java virtual machine and class libraries.
http:/ /www.kaffe.org

Kawa, the Java-based Scheme system.
http://http:/ /www.gnu.org/software/kawa/

KDE, the K desktop environment.
http:/ /www.kde.org

The Kimera Verifier.

Currently off-line because of a World Wide Web presen-
tation rework.

http:/ /kimera.cs.washington.edu /verifier. html

http:/ /www-kimera.cs.washington. edu

Emin Giin Sirer: Testing Java Virtual Machines. An Ex-
perience Report on Automatically Testing Java Virtual
Machines. University of Washington, Dept. of Computer
Science and Engineering.
http://kimera.cs.washington.edu

Emin Giin Sirer, Brian N. Bershad: Using Production
Grammars in Software Testing. University of Washing-
ton, Department of Computer Science.
http://kimera.cs.washington.edu

kissme. A free Java Virtual Machine.
http:/ /kissme.sourceforge.net

Todd A. Proebsting, Scott A. Watterson: Krakatoa:
Decompilation in Java (Does Bytecode Reveal Source?).
The University of Arizona, Department of Computer
Science.

87



Bibliography

[langspec2]

[M2]

[Mozilla|

[Neuromancer|

[ORP-WWW]

[PLAIVM]

[PMG-WWW]

[Qian]

[SableVM-WWW]|

[StataAbadi]

[Unknowable]

[Unicode]

[Yellin-WWW]|

88

http://www.cs.arizona.edu/people /saw/papers/Krakatoa-
COOTS97.ps. Z

James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The
Java Language Specification, Second Edition. Addison-
Wesley 2000, ISBN 0201310082.

Niklaus Wirth: Programming in Modula-2, Fourth Edi-
tion. Springer-Verlag 1988, ISBN 3-540-50150-9.

Mozilla.org (The Mozilla Origanization): Mozilla.
http:/ /www.mozilla.org

William Gibson: Neuromancer. Ace Books 1994, ISBN
0441000681.

Open Runtime Platform. A Platform For Bytecode Sys-
tem Research.
http:/ /www.intel.com /research/mrl/orp /index.htm

Robert Tolksdorf: Programming Languages for the Java
Virtual Machine.
http://grunge.cs.tu-berlin.de/ “tolk/vmlanguages.html

PMG. Poor Man’s Genericity for Java.
http: / /www.inf. fu-berlin.de/ ~bokowski/pmgjava/index. html

Zhenyu Qian: A Formal Specification of Java™ Virtual
Machine Instructions for Objects, Methods and Subrou-
tines. Bremen Institute for Safe Systems (BISS), FB3
Informatik, Universitdt Bremen, D-28334 Bremen, Ger-
many.

SableVM. A Bytecode Interpreter.
http:/ /www.sablevm.org

Raymie Stata and Martin Abadi: A Type System for
Java Bytecode Subroutines. In: ACM Transactions on
Programming Languages and Systems, Vol. 21, No. 1,
January 1999, Pages 90-137.

G.J. Chaitin: The Unknowable. Springer-Verlag 1999,
ISBN 981-4021-72-5.
http:/ /www.umcs.maine.edu/~chaitin /unknowable/

The Unicode Consortium: The Unicode Standard, Ver-
sion 2.0. Niso Press 1996, ISBN 0-201-48345-9.
http:/ /www.unicode.oryg

Frank Yellin: Low Level Security in Java.
http://java.sun.com/sfaq/verifier. html



Bibliography

[VMSPEC?] Tim Lindholm, Frank Yellin: The Java™ Virtual
Machine Specification, Second Edition. Addison-Wesley
1999, ISBN 0-201-43294-4.

89



