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Abstract

Extensions and improvements of the programming language Java and its related execu-
tion environment (Java Virtual Machine, JVM) are the subject of a large number of research
projects and proposals. There are projects, for instance, to add parameterized types to Java,
to implement “Aspect-Oriented Programming”, to perform sophisticated static analysis, and
to improve the run-time performance.

Since Java classes are compiled into portable binary class files (calledbyte code), it
is the most convenient and platform-independent way to implement these improvements
not by writing a new compiler or changing the JVM, but by transforming the byte code.
These transformations can either be performed after compile-time, or at load-time. Many
programmers are doing this by implementing their own specialized byte code manipulation
tools, which are, however, restricted in the range of their re-usability.

To deal with the necessary class file transformations, we introduce an API that helps
developers to conveniently implement their transformations.

1 Introduction

The Java language [GJS96] has become very popular and many research projects deal with fur-
ther improvements of the language or its run-time behavior. The possibility to extend a language
with new concepts is surely a desirable feature, but implementation issues should be hidden
from the user. Fortunately, the concepts of the Java Virtual Machine permit the user-transparent
implementation of such extensions with relatively little effort.

Because the target language of Java is an interpreted language with a small and easy-to-
understand set of instructions (thebyte code), developers can implement and test their concepts
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in a very elegant way. One can write a plug-in replacement for the system’s class loader which is
responsible for dynamically loading class files at run-time and passing the byte code to the Virtual
Machine (see section4.1). Class loaders may thus be used to intercept the loading process and
transform classes before they get actually executed by the JVM [LB98]. While the original class
files always remain unaltered, the behavior of the class loader may be reconfigured for every
execution or instrumented dynamically.

TheBCEL API (Byte Code Engineering Library), formerly known as JavaClass, is a toolkit
for the static analysis and dynamic creation or transformation of Java class files. It enables
developers to implement the desired features on a high level of abstraction without handling all
the internal details of the Java class file format and thus re-inventing the wheel every time.BCEL
is written entirely in Java and freely available under the terms of GNU Library Public License
(LGPL). 1

This report is structured as follows: We give a brief description of the Java Virtual Machine
and the class file format in section2. Section3 introduces theBCEL API. Section4 describes
some typical application areas and example projects. The appendix contains code examples that
are to long to be presented in the main part of this report. All examples are included in the
down-loadable distribution.

1.1 Related work

There are a number of proposals and class libraries that have some similarities with BCEL: The
JOIE [CCK98] toolkit can be used to instrument class loaders with dynamic behavior. Similarly,
“Binary Component Adaptation” [KH98] allows components to be adapted and evolved on-the-
fly. Han Lee’s “Byte-code Instrumenting Tool” [LZ98] allows the user to insert calls to analysis
methods anywhere in the byte code. The Jasmin language [MD97] can be used to hand-write or
generate pseudo-assembler code. D-Java [Sil98] and JCF [You98] are class viewing tools.

In contrast to these projects,BCEL is intended to be a general purpose tool for “byte code
engineering”. It gives full control to the developer on a high level of abstraction and is not
restricted to any particular application area.

2 The Java Virtual Machine

Readers already familiar with the Java Virtual Machine and the Java class file format may want
to skip this section and proceed with section3.

Programs written in the Java language are compiled into a portable binary format calledbyte
code. Every class is represented by a single class file containing class related data and byte code
instructions. These files are loaded dynamically into an interpreter (Java Virtual Machine, JVM)
and executed.

Figure1 illustrates the procedure of compiling and executing a Java class: The source file
(HelloWorld.java ) is compiled into a Java class file (HelloWorld.class ), loaded by

1The distribution is available athttp://bcel.sourceforge.net/ , including several code examples and
javadoc manuals.
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the byte code interpreter and executed. In order to implement additional features, researchers
may want to transform class files (drawn with bold lines) before they get actually executed. This
application area is one of the main issues of this article.

javajavac

08 1a 42 ...
ca fe ba be

Other classes

public class
HelloWorld {
  ...

  void hello() {
    ...
  }
}

HelloWorld.class

Java language Java Virtual Machine

HelloWorld.java

Figure 1: Compilation and execution of Java classes

Note that the use of the general term “Java” implies two meanings: on the one hand, Java
as a programming language is meant, on the other hand, the Java Virtual Machine, which is not
necessarily targeted by the Java language exclusively, but may be used by other languages as
well (e.g. Eiffel [CCZ97], or Ada [Taf96]). We assume the reader to be familiar with the Java
language and to have a general understanding of the Virtual Machine.

2.1 Java class file format

Giving a full overview of the design issues of the Java class file format and the associated byte
code instructions is beyond the scope of this report. We will just give a brief introduction cover-
ing the details that are necessary for understanding the rest of this paper. The format of class files
and the byte code instruction set are described in more detail in the “Java Virtual Machine Speci-
fication” [LY97] 2, and in [MD97]. Especially, we will not deal with the security constraints that
the Java Virtual Machine has to check at run-time, i.e. the byte code verifier.

Figure2 shows a simplified example of the contents of a Java class file: It starts with a header
containing a “magic number” (0xCAFEBABE) and the version number, followed by theconstant
pool, which can be roughly thought of as the text segment of an executable, theaccess rightsof
the class encoded by a bit mask, a list of interfaces implemented by the class, lists containing the
fields and methods of the class, and finally theclass attributes, e.g. theSourceFile attribute

2Also available online athttp://www.javasoft.com/docs/books/vmspec/index.html
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telling the name of the source file. Attributes are a way of putting additional, e.g. user-defined,
information into class file data structures. For example, a custom class loader may evaluate
such attribute data in order to perform its transformations. The JVM specification declares that
unknown, i.e. user-defined attributes must be ignored by any Virtual Machine implementation.

Methods

Fields

Implemented interfaces

Access rights

Header

Constant pool

Class attributes

ConstantFieldref
"aVariable"
"[Ljava/lang/Object;"

"HelloWorld"

"java/io/PrintStream"

ConstantMethodRef
"println"
"(Ljava/lang/String;)V"

ConstantClass
"java/io/PrintStream"

getstatic     java.lang.System.out

invokevirtual java.io.PrintStream.println

ldc           "Hello, world"

HelloWorld.class

"Hello, world"
ConstantString

Figure 2: Java class file format

Because all of the information needed to dynamically resolve the symbolic references to
classes, fields and methods at run-time is coded with string constants, the constant pool contains
in fact the largest portion of an average class file, approximately 60% [AP98]. The byte code
instructions themselves just make up 12%.

The right upper box shows a “zoomed” excerpt of the constant pool, while the rounded box
below depicts some instructions that are contained within a method of the example class. These
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instructions represent the straightforward translation of the well-known statement:

System.out.println("Hello, world");

The first instruction loads the contents of the fieldout of classjava.lang.System onto
the operand stack. This is an instance of the classjava.io.PrintStream . Theldc (“Load
constant”) pushes a reference to the string ”Hello world” on the stack. The next instruction
invokes the instance methodprintln which takes both values as parameters (Instance methods
always implicitly take an instance reference as their first argument).

Instructions, other data structures within the class file and constants themselves may refer
to constants in the constant pool. Such references are implemented via fixed indexes encoded
directly into the instructions. This is illustrated for some items of the figure emphasized with a
surrounding box.

For example, theinvokevirtual instruction refers to aMethodRef constant that con-
tains information about the name of the called method, the signature (i.e. the encoded argu-
ment and return types), and to which class the method belongs. In fact, as emphasized by
the boxed value, theMethodRef constant itself just refers to other entries holding the real
data, e.g. it refers to aConstantClass entry containing a symbolic reference to the class
java.io.PrintStream . To keep the class file compact, such constants are typically shared
by different instructions. Similarly, a field is represented by aFieldref constant that includes
information about the name, the type and the containing class of the field.

The constant pool basically holds the following types of constants: References to methods,
fields and classes, strings, integers, floats, longs, and doubles.

2.2 Byte code instruction set

The JVM is a stack-oriented interpreter that creates a local stack frame of fixed size for every
method invocation. The size of the local stack has to be computed by the compiler. Values may
also be stored intermediately in a frame area containinglocal variableswhich can be used like a
set of registers. These local variables are numbered from 0 to 65535, i.e. you have a maximum
of 65536 of local variables. The stack frames of caller and callee method are overlapping, i.e.
the caller pushes arguments onto the operand stack and the called method receives them in local
variables.

The byte code instruction set currently consists of 212 instructions, 44 opcodes are marked as
reserved and may be used for future extensions or intermediate optimizations within the Virtual
Machine. The instruction set can be roughly grouped as follows:

Stack operations: Constants can be pushed onto the stack either by loading them from the
constant pool with theldc instruction or with special “short-cut” instructions where the
operand is encoded into the instructions, e.g.iconst 0 or bipush (push byte value).

Arithmetic operations: The instruction set of the Java Virtual Machine distinguishes its operand
types using different instructions to operate on values of specific type. Arithmetic opera-
tions starting withi , for example, denote an integer operation. E.g.,iadd that adds two
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integers and pushes the result back on the stack. The Java typesboolean , byte , short ,
andchar are handled as integers by the JVM.

Control flow: There are branch instructions likegoto andif icmpeq , which compares two
integers for equality. There is also ajsr (jump sub-routine) andret pair of instructions
that is used to implement thefinally clause oftry-catch blocks. Exceptions may
be thrown with theathrow instruction.

Branch targets are coded as offsets from the current byte code position, i.e. with an integer
number.

Load and store operations for local variables likeiload andistore . There are also array
operations likeiastore which stores an integer value into an array.

Field access:The value of an instance field may be retrieved withgetfield and written with
putfield . For static fields, there aregetstatic andputstatic counterparts.

Method invocation: Methods may either be called via static references withinvokestatic
or be bound virtually with theinvokevirtual instruction. Super class methods and
private methods are invoked withinvokespecial .

Object allocation: Class instances are allocated with thenew instruction, arrays of basic type
like int[] with newarray , arrays of references likeString[][] with anewarray
or multianewarray .

Conversion and type checking:For stack operands of basic type there exist casting operations
like f2i which converts a float value into an integer. The validity of a type cast may be
checked withcheckcast and theinstanceof operator can be directly mapped to the
equally named instruction.

Most instructions have a fixed length, but there are also some variable-length instructions: In
particular, thelookupswitch andtableswitch instructions, which are used to implement
switch() statements. Since the number ofcase clauses may vary, these instructions contain
a variable number of statements.

We will not list all byte code instructions here, since these are explained in detail in the JVM
specification. The opcode names are mostly self-explaining, so understanding the following code
examples should be fairly intuitive.

2.3 Method code

Non-abstract methods contain an attribute (Code) that holds the following data: The maximum
size of the method’s stack frame, the number of local variables and an array of byte code instruc-
tions. Optionally, it may also contain information about the names of local variables and source
file line numbers that can be used by a debugger.

Whenever an exception is thrown, the JVM performs exception handling by looking into a
table of exception handlers. The table marks handlers, i.e. pieces of code, to be responsible for
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exceptions of certain types that are raised within a given area of the byte code. When there is
no appropriate handler the exception is propagated back to the caller of the method. The handler
information is itself stored in an attribute contained within theCode attribute.

2.4 Byte code offsets

Targets of branch instructions likegoto are encoded as relative offsets in the array of byte
codes. Exception handlers and local variables refer to absolute addresses within the byte code.
The former contains references to the start and the end of thetry block, and to the instruction
handler code. The latter marks the range in which a local variable is valid, i.e. its scope. This
makes it difficult to insert or delete code areas on this level of abstraction, since one has to
recompute the offsets every time and update the referring objects. We will see in section3.3how
BCEL remedies this restriction.

2.5 Type information

Java is a type-safe language and the information about the types of fields, local variables, and
methods is stored insignatures. These are strings stored in the constant pool and encoded in a
special format. For example the argument and return types of themain method

public static void main(String[] argv)

are represented by the signature

([java/lang/String;)V

Classes and arrays are internally represented by strings like"java/lang/String" , ba-
sic types likefloat by an integer number. Within signatures they are represented by single
characters, e.g.,"I" , for integer.

2.6 Code example

The following example program prompts for a number and prints the faculty of it. Theread-
Line() method reading from the standard input may raise anIOException and if a mis-
spelled number is passed toparseInt() it throws aNumberFormatException . Thus,
the critical area of code must be encapsulated in atry-catch block.

import java.io.*;
public class Faculty {

private static BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

public static final int fac(int n) {
return (n == 0)? 1 : n * fac(n - 1);

}
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public static final int readInt() {
int n = 4711;
try {

System.out.print("Please enter a number> ");
n = Integer.parseInt(in.readLine());

} catch(IOException e1) { System.err.println(e1); }
catch(NumberFormatException e2) { System.err.println(e2); }

return n;
}
public static void main(String[] argv) {

int n = readInt();
System.out.println("Faculty o f " + n + " is " + fac(n));

}}

This code example typically compiles to the following chunks of byte code:

2.6.1 Method fac

0: iload_0
1: ifne #8
4: iconst_1
5: goto #16
8: iload_0
9: iload_0
10: iconst_1
11: isub
12: invokestatic Faculty.fac (I)I (12)
15: imul
16: ireturn

LocalVariable(start_pc = 0, length = 16, index = 0:int n)

The methodfac has only one local variable, the argumentn, stored in slot 0. This variable’s scope
ranges from the start of the byte code sequence to the very end. If the value ofn (stored in local variable
0, i.e. the value fetched withiload 0) is not equal to 0, theifne instruction branches to the byte code
at offset 8, otherwise a 1 is pushed onto the operand stack and the control flow branches to the final return.
For ease of reading, the offsets of the branch instructions, which are actually relative, are displayed as
absolute addresses in these examples.

If recursion has to continue, the arguments for the multiplication (n andfac(n - 1) ) are evaluated
and the results pushed onto the operand stack. After the multiplication operation has been performed the
function returns the computed value from the top of the stack.

2.6.2 Method readInt

0: sipush 4711
3: istore_0
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4: getstatic java.lang.System.out Ljava/io/PrintStream;
7: ldc "Please enter a number> "
9: invokevirtual java.io.PrintStream.print (Ljava/lang/String;)V
12: getstatic Faculty.in Ljava/io/BufferedReader;
15: invokevirtual java.io.BufferedReader.readLine ()Ljava/lang/String;
18: invokestatic java.lang.Integer.parseInt (Ljava/lang/String;)I
21: istore_0
22: goto #44
25: astore_1
26: getstatic java.lang.System.err Ljava/io/PrintStream;
29: aload_1
30: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V
33: goto #44
36: astore_1
37: getstatic java.lang.System.err Ljava/io/PrintStream;
40: aload_1
41: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V
44: iload_0
45: ireturn

Exception handler(s) =
From To Handler Type
4 22 25 java.io.IOException(6)
4 22 36 NumberFormatException(10)

First the local variablen (in slot 0) is initialized to the value 4711. The next instruction,getstatic ,
loads the staticSystem.out field onto the stack. Then a string is loaded and printed, a number read
from the standard input and assigned ton.

If one of the called methods (readLine() andparseInt() ) throws an exception, the Java Virtual
Machine calls one of the declared exception handlers, depending on the type of the exception. Thetry -
clause itself does not produce any code, it merely defines the range in which the following handlers
are active. In the example the specified source code area maps to a byte code area ranging from offset 4
(inclusive) to 22 (exclusive). If no exception has occurred (“normal” execution flow) thegoto instructions
branch behind the handler code. There the value ofn is loaded and returned.

For example the handler forjava.io.IOException starts at offset 25. It simply prints the error
and branches back to the normal execution flow, i.e. as if no exception had occurred.

3 The BCEL API

TheBCEL API abstracts from the concrete circumstances of the Java Virtual Machine and how to read
and write binary Java class files. The API mainly consists of three parts:

1. A package that contains classes that describe “static” constraints of class files, i.e., reflect the class
file format and is not intended for byte code modifications. The classes may be used to read and
write class files from or to a file. This is useful especially for analyzing Java classes without having
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the source files at hand. The main data structure is calledJavaClass which contains methods,
fields, etc..

2. A package to dynamically generate or modifyJavaClass objects. It may be used e.g. to insert
analysis code, to strip unnecessary information from class files, or to implement the code generator
back-end of a Java compiler.

3. Various code examples and utilities like a class file viewer, a tool to convert class files into HTML,
and a converter from class files to the Jasmin assembly language [MD97].

3.1 JavaClass

The “static” component of theBCEL API resides in the packagede.fub.bytecode.classfile
and represents class files. All of the binary components and data structures declared in the JVM speci-
fication [LY97] and described in section2 are mapped to classes. Figure3 shows an UML diagram of
the hierarchy of classes of theBCEL API. Figure8 in the appendix also shows a detailed diagram of the
ConstantPool components.

The top-level data structure isJavaClass , which in most cases is created by aClassParser
object that is capable of parsing binary class files. AJavaClass object basically consists of fields,
methods, symbolic references to the super class and to the implemented interfaces.

The constant pool serves as some kind of central repository and is thus of outstanding importance for
all components.ConstantPool objects contain an array of fixed size ofConstant entries, which
may be retrieved via thegetConstant() method taking an integer index as argument. Indexes to the
constant pool may be contained in instructions as well as in other components of a class file and in constant
pool entries themselves.

Methods and fields contain a signature, symbolically defining their types. Access flags likepublic
static final occur in several places and are encoded by an integer bit mask, e.g.public static
final matches to the Java expression

int access_flags = ACC_PUBLIC | ACC_STATIC | ACC_FINAL;

As mentioned in section2.1already, several components may containattributeobjects: classes, fields,
methods, andCode objects (introduced in section2.3). The latter is an attribute itself that contains the ac-
tual byte code array, the maximum stack size, the number of local variables, a table of handled exceptions,
and some optional debugging information coded asLineNumberTable andLocalVariableTable
attributes. Attributes are in general specific to some data structure, i.e. no two components share the same
kind of attribute, though this is not explicitly forbidden. In the figure theAttribute classes are marked
with the component they belong to.

3.2 Class repository

Using the providedRepository class, reading class files into aJavaClass object is quite simple:

JavaClass clazz = Repository.lookupClass("java.lang.String");

The repository also contains methods providing the dynamic equivalent of theinstanceof opera-
tor, and other useful routines:
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if(Repository.instanceOf(clazz, super_class) {
...

}

3.2.1 Accessing class file data

Information within the class file components may be accessed like Java Beans via intuitive set/get methods.
All of them also define atoString() method so that implementing a simple class viewer is very easy.
In fact all of the examples used here have been produced this way:

System.out.println(clazz);
printCode(clazz.getMethods());
...
public static void printCode(Method[] methods) {

for(int i=0; i < methods.length; i++) {
System.out.println(methods[i]);

Code code = methods[i].getCode();
if(code != null) // Non-abstract method

System.out.println(code);
}

}

3.2.2 Analyzing class data

Last but not least,BCEL supports theVisitor design pattern [GHJV95], so one can write visitor objects to
traverse and analyze the contents of a class file. Included in the distribution is a classJasminVisitor
that converts class files into the Jasmin assembler language [MD97].

3.3 ClassGen

This part of the API (packagede.fub.bytecode.generic ) supplies an abstraction level for cre-
ating or transforming class files dynamically. It makes the static constraints of Java class files like the
hard-coded byte code addresses generic. The generic constant pool, for example, is implemented by the
classConstantPoolGen which offers methods for adding different types of constants. Accordingly,
ClassGen offers an interface to add methods, fields, and attributes. Figure4 gives an overview of this
part of the API.

3.3.1 Types

We abstract from the concrete details of the type signature syntax (see2.5) by introducing theType class,
which is used, for example, by methods to define their return and argument types. Concrete sub-classes
areBasicType , ObjectType , andArrayType which consists of the element type and the number
of dimensions. For commonly used types the class offers some predefined constants. For example the
method signature of themain method as shown in section2.5 is represented by:
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Type return_type = Type.VOID;
Type[] arg_types = new Type[] { new ArrayType(Type.STRING, 1) };

Type also contains methods to convert types into textual signatures and vice versa. The sub-classes
contain implementations of the routines and constraints specified by the Java Language Specification
[GJS96].

3.3.2 Generic fields and methods

Fields are represented byFieldGen objects, which may be freely modified by the user. If they have
the access rightsstatic final , i.e. are constants and of basic type, they may optionally have an
initializing value.

Generic methods contain methods to add exceptions the method may throw, local variables, and ex-
ception handlers. The latter two are represented by user-configurable objects as well. Because exception
handlers and local variables contain references to byte code addresses, they also take the role of aninstruc-
tion targeter in our terminology. Instruction targeters contain a methodupdateTarget() to redirect
a reference. Generic (non-abstract) methods refer toinstruction liststhat consist of instruction objects.
References to byte code addresses are implemented by handles to instruction objects. This is explained in
more detail in the following sections.

The maximum stack size needed by the method and the maximum number of local variables used may
be set manually or computed via thesetMaxStack() andsetMaxLocals() methods automatically.

3.3.3 Instructions

Modeling instructions as objects may look somewhat odd at first sight, but in fact enables programmers
to obtain a high-level view upon control flow without handling details like concrete byte code offsets.
Instructions consist of a tag, i.e. an opcode, their length in bytes and an offset (or index) within the byte
code. Since many instructions are immutable, theInstructionConstants interface offers shareable
predefined “fly-weight” constants to use.

Instructions are grouped via sub-classing, the type hierarchy of instruction classes is illustrated by (in-
complete) figure9 in the appendix. The most important family of instructions are thebranch instructions,
e.g.goto , that branch to targets somewhere within the byte code. Obviously, this makes them candidates
for playing anInstructionTargeter role, too. Instructions are further grouped by the interfaces
they implement, there are, e.g.,TypedInstruction s that are associated with a specific type likeldc ,
or ExceptionThrower instructions that may raise exceptions when executed.

All instructions can be traversed viaaccept(Visitor v) methods, i.e., the Visitor design pattern.
There is however some special trick in these methods that allows to merge the handling of certain instruc-
tion groups. Theaccept() do not only call the correspondingvisit() method, but callvisit()
methods of their respective super classes and implemented interfaces first, i.e. the most specificvisit()
call is last. Thus one can group the handling of, say, allBranchInstruction s into one single method.

For debugging purposes it may even make sense to “invent” your own instructions. In a sophisticated
code generator like the one used as a backend of the Barat framework [BS98] one often has to insert
temporarynop (No operation) instructions. When examining the produced code it may be very difficult
to track back where thenop was actually inserted. One could think of a derivednop2 instruction that
contains additional debugging information. When the instruction list is dumped to byte code, the extra
data is simply dropped.
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One could also think of new byte code instructions operating on complex numbers that are replaced
by normal byte code upon load-time or are recognized by a new JVM.

3.3.4 Instruction lists

An instruction list is implemented by a list ofinstruction handlesencapsulating instruction objects. Ref-
erences to instructions in the list are thus not implemented by direct pointers to instructions but by pointers
to instructionhandles. This makes appending, inserting and deleting areas of code very simple. Since we
use symbolic references, computation of concrete byte code offsets does not need to occur until finaliza-
tion, i.e. until the user has finished the process of generating or transforming code. We will use the term
instruction handle and instruction synonymously throughout the rest of the report. Instruction handles
may contain additional user-defined data using theaddAttribute() method.

Appending. One can append instructions or other instruction lists anywhere to an existing list. The
instructions are appended after the given instruction handle. All append methods return a new instruction
handle which may then be used as the target of a branch instruction, e.g..

InstructionList il = new InstructionList();
...
GOTO g = new GOTO(null);
il.append(g);
...
InstructionHandle ih = il.append(InstructionConstants.ACONST_NULL);
g.setTarget(ih);

Inserting. Instructions may be inserted anywhere into an existing list. They are inserted before the
given instruction handle. All insert methods return a new instruction handle which may then be used as
the start address of an exception handler, for example.

InstructionHandle start = il.insert(insertion_point,
InstructionConstants.NOP);

...
mg.addExceptionHandler(start, end, handler, "java.io.IOException");

Deleting. Deletion of instructions is also very straightforward; all instruction handles and the contained
instructions within a given range are removed from the instruction list and disposed. Thedelete()
method may however throw aTargetLostException when there are instruction targeters still ref-
erencing one of the deleted instructions. The user is forced to handle such exceptions in atry-catch
block and redirect these references elsewhere. Thepeep holeoptimizer described in sectionA.3 gives a
detailed example for this.

try {
il.delete(first, last);

} catch(TargetLostException e) {
InstructionHandle[] targets = e.getTargets();
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for(int i=0; i < targets.length; i++) {
InstructionTargeter[] targeters = targets[i].getTargeters();
for(int j=0; j < targeters.length; j++)

targeters[j].updateTarget(targets[i], new_target);
}

}

Finalizing. When the instruction list is ready to be dumped to pure byte code, all symbolic references
must be mapped to real byte code offsets. This is done by thegetByteCode() method which is
called by default byMethodGen.getMethod() . Afterwards you should calldispose() so that the
instruction handles can be reused internally. This helps to reduce memory usage.

InstructionList il = new InstructionList();

ClassGen cg = new ClassGen("HelloWorld", "java.lang.Object",
"<generated>", ACC_PUBLIC | ACC_SUPER,
null);

MethodGen mg = new MethodGen(ACC_STATIC | ACC_PUBLIC,
Type.VOID, new Type[] {

new ArrayType(Type.STRING, 1)
}, new String[] { "argv" },
"main", "HelloWorld", il, cp);

...
cg.addMethod(mg.getMethod());
il.dispose(); // Reuse instruction handles of list

3.3.5 Code example revisited

Using instruction lists gives us a generic view upon the code: In Figure5 we again present the code chunk
of thereadInt() method of the faculty example in section2.6: The local variablesn ande1 both hold
two references to instructions, defining their scope. There are twogoto s branching to theiload at the
end of the method. One of the exception handlers is displayed, too: it references the start and the end of
the try block and also the exception handler code.

3.3.6 Instruction factories

To simplify the creation of certain instructions the user can use the suppliedInstructionFactory
class which offers a lot of useful methods to create instructions from scratch. Alternatively, he can also
usecompound instructions: When producing byte code, some patterns typically occur very frequently, for
instance the compilation of arithmetic or comparison expressions. You certainly do not want to rewrite the
code that translates such expressions into byte code in every place they may appear. In order to support
this, theBCEL API includes acompound instruction(an interface with a singlegetInstruction-
List() method). Instances of this class may be used in any place where normal instructions would
occur, particularly in append operations.
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goto

invokevirtual

aload

getstatic

astore

goto

istore

iload

ireturn

getstatic

istore

sipush

IOException e1

int n

Exception handler 1

Figure 5: Instruction list forreadInt() method
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Example: Pushing constants. Pushing constants onto the operand stack may be coded in different
ways. As explained in section2.2there are some “short-cut” instructions that can be used to make the pro-
duced byte code more compact. The smallest instruction to push a single1 onto the stack isiconst 1,
other possibilities arebipush (can be used to push values between -128 and 127),sipush (between
-32768 and 32767), orldc (load constant from constant pool).

Instead of repeatedly selecting the most compact instruction in, say, a switch, one can use the com-
poundPUSHinstruction whenever pushing a constant number or string. It will produce the appropriate
byte code instruction and insert entries into to constant pool if necessary.

il.append(new PUSH(cp, "Hello, world"));
il.append(new PUSH(cp, 4711));

3.3.7 Code patterns using regular expressions

When transforming code, for instance during optimization or when inserting analysis method calls, one
typically searches for certain patterns of code to perform the transformation at. To simplify handling such
situationsBCEL introduces a special feature: One can search for given code patterns within an instruction
list usingregular expressions. In such expressions, instructions are represented by symbolic names, e.g.
” ‘IfInstruction’ ”. Meta characters like+, * , and(..|..) have their usual meanings. Thus, the
expression

"‘NOP’+(‘ILOAD__’|‘ALOAD__’)*"

represents a piece of code consisting of at least oneNOPfollowed by a possibly empty sequence of
ILOAD andALOADinstructions.

Thesearch() method of classFindPattern gets an instruction list and a regular expression as
arguments and returns an array describing the area of matched instructions. Additional constraints to the
matching area of instructions, which can not be implemented via regular expressions, may be expressed
via code constraints.

3.3.8 Example: Optimizing boolean expressions.

In Java, boolean values are mapped to 1 and to 0, respectively. Thus, the simplest way to evaluate boolean
expressions is to push a 1 or a 0 onto the operand stack depending on the truth value of the expression. But
this way, the subsequent combination of boolean expressions (with&&, e.g) yields long chunks of code
that push lots of 1s and 0s onto the stack.

When the code has been finalized these chunks can be optimized with apeep holealgorithm: An
IfInstruction (e.g. the comparison of two integers:if icmpeq ) that either produces a 1 or a 0
on the stack and is followed by anifne instruction (branch if stack value6= 0) may be replaced by the
IfInstruction with its branch target replaced by the target of theifne instruction:

InstructionList il = new InstructionList();
...
CodeConstraint constraint = new CodeConstraint() {

public boolean checkCode(InstructionHandle[] match) {
IfInstruction if1 = (IfInstruction)match[0].getInstruction();
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GOTO g = (GOTO)match[2].getInstruction();
return (if1.getTarget() == match[3]) &&

(g.getTarget() == match[4]);
}

};
FindPattern f = new FindPattern(il);
String pat = "‘IfInstruction’‘ICONST_0’‘GOTO’‘ICONST_1’" +

"‘NOP’(‘IFEQ’|‘IFNE’)";
InstructionHandle[] match;
for(InstructionHandle ih = f.search(pat, constraint);

ih != null; ih = f.search(pat, match[0], constraint)) {
match = f.getMatch(); // Constraint already checked
...
match[0].setTarget(match[5].getTarget()); // Update target
...
try {

il.delete(match[1], match[5]);
} catch(TargetLostException e) { ... }

}

The applied code constraint object ensures that the matched code really corresponds to the targeted
expression pattern. Subsequent application of this algorithm removes all unnecessary stack operations
and branch instructions from the byte code. If any of the deleted instructions is still referenced by an
InstructionTargeter object, the reference has to be updated in thecatch -clause.

Code exampleA.1 gives a verbose example of how to create a class file, while exampleA.3 shows
how to implement a simple peephole optimizer and how to deal withTargetLost exceptions.

Example application: The expression

if((a == null) || (i < 2))
System.out.println("Ooops");

can be mapped to both of the chunks of byte code shown in figure3.3.8. The left column represents
the unoptimized code while the right column displays the same code after an aggressively optimizing peep
hole algorithm has been applied:

4 Application areas

There are many possible application areas forBCEL ranging from class browsers, profilers, byte code
optimizers, and compilers to sophisticated run-time analysis tools and extensions to the Java language
[AFM97, MBL97].

Compilers like the Barat compiler [BS98] useBCEL to implement a byte code generating back end.
Other possible application areas are the static analysis of byte code [TK98] or examining the run-time
behavior of classes by inserting calls to profiling methods into the code. Further examples are extending
Java with Eiffel-like assertions [FM98], automated delegation [Cos98], or with the concepts of “Aspect-
Oriented Programming” [KLM+97].
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5: aload_0
6: ifnull #13
9: iconst_0
10: goto #14
13: iconst_1
14: nop
15: ifne #36
18: iload_1
19: iconst_2
20: if_icmplt #27
23: iconst_0
24: goto #28
27: iconst_1
28: nop
29: ifne #36
32: iconst_0
33: goto #37
36: iconst_1
37: nop
38: ifeq #52
41: getstatic System.out
44: ldc "Ooops"
46: invokevirtual println
52: return

10: aload_0
11: ifnull #19
14: iload_1
15: iconst_2
16: if_icmpge #27
19: getstatic System.out
22: ldc "Ooops"
24: invokevirtual println
27: return

Figure 6: Optimizing boolean expressions
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4.1 Class loaders

Class loaders are responsible for loading class files from the file system or other resources and passing
the byte code to the Virtual Machine [LB98]. A customClassLoader object may be used to intercept
the standard procedure of loading a class, i.e. the system class loader, and perform some transformations
before actually passing the byte code to the JVM.

A possible scenario is described in figure7: During run-time the Virtual Machine requests a custom
class loader to load a given class. But before the JVM actually sees the byte code, the class loader makes
a “side-step” and performs some transformation to the class. To make sure that the modified byte code is
still valid and does not violate any of the JVM’s rules it is checked by the verifier before the JVM finally
executes it.

Java class file Class loader Byte code verifier Interpreter/JIT

Byte code transformations

JavaClass

Figure 7: Class loaders

Using class loaders is an elegant way of extending the Java Virtual Machine with new features without
actually modifying it. This concept enables developers to useload-time reflectionto implement their ideas
as opposed to the static reflection supported by the Java Reflection API [Jav98]. Load-time transforma-
tions supply the user with a new level of abstraction. He is not strictly tied to the static constraints of
the original authors of the classes but may customize the applications with third-party code in order to
benefit from new features. Such transformations may be executed on demand and neither interfere with
other users, nor alter the original byte code. In fact, class loaders may even create classesad hocwithout
loading a file at all.

4.1.1 Example: Poor Man’s Genericity

The “Poor Man’s Genericity” project [BD98] that extends Java with parameterized classes, for exam-
ple, usesBCEL in two places to generate instances of parameterized classes: During compile-time (the
standardjavac with some slightly changed classes) and at run-time using a custom class loader. The
compiler puts some additional type information into class files which is evaluated at load-time by the
class loader. The class loader performs some transformations on the loaded class and passes them to the
VM. The following algorithm illustrates how the load method of the class loader fulfills the request for a
parameterized class, e.g.Stack<String>

1. Search for classStack , load it, and check for a certain class attribute containing additional type
information. I.e. the attribute defines the “real” name of the class, i.e.Stack<A> .

2. Replace all occurrences and references to the formal typeA with references to the actual type
String . For example the method

21



void push(A obj) { ... }

becomes

void push(String obj) { ... }

3. Return the resulting class to the Virtual Machine.

5 Conclusions and future work

In this report we presented theBCEL API that is intended to be a general purpose tool for byte code
engineering. It helps developers to implement analysis tools or byte code transformations conveniently. It
has proved to be useful in several projects and is not restricted to a special kind of application area.

We found two issues of the API that may be considered as drawbacks: The generic constant pool is a
“Add-only” data structure, i.e. constant pool entries can be added and retrieved but not be removed directly.
They are referenced via integer indexes and not some kind of virtual handle. We think that the removal of
entries from the constant pool is rarely an issue and that implementing the access to it via handles would
cause too much overhead. One would rather write a supplementary tool to strip unnecessary entries from
classes. The second issue may be not to encapsulate instructions into instruction handles anymore but to
put the necessary code directly into the instructions. Yet we feel that this would not give us such a clear
and elegant level of abstraction as it does now and we could not share instruction objects.

Up to date information can be found at

http://bcel.sourceforge.net/

References

[AFM97] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding Type Parameterization to the Java
Language. InProceedings OOPSLA’97, Atlanta, GA, 1997.

[AP98] D. Antonioli and M. Pilz. Statistische Analyse von Java-Classfiles. In Clemens Cap, editor,
Proceedings JIT’98. Springer, 1998.

[BD98] B. Bokowski and M. Dahm. Poor Man’s Genericity for Java. In Clemens Cap, editor,Pro-
ceedings JIT’98. Springer, 1998.

[BS98] B. Bokowski and A. Spiegel. Barat – A Front-End for Java. Technical report, Freie Universit¨at
Berlin, 1998.

[CCK98] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic Program Transformation with
JOIE. InProceedings USENIX Annual Technical Symposium, 1998.

[CCZ97] Suzanne Collin, Dominique Colnet, and Olivier Zendra. Type Inference for Late Binding.
The SmallEiffel Compiler. InProceedings JMLC’97, 1997.

22

http://bcel.sourceforge.net/


[Cos98] Pascal Costanza. The ClassFilters package. Universität Bonn,
http://www.cs.uni-bonn.de/˜costanza/ClassFilters/ , 1998.

[FM98] C. Fischer and D. Meemken. JaWa: Java with Assertions. In Clemens Cap, editor,Proceed-
ings JIT’98. Springer, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[GJS96] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, 1996.

[Jav98] JavaSoft.Reflection API. http://java.sun.com/products/jdk/1.1/docs/guide/reflectio n
1998.

[KH98] Ralph Keller and Urs H¨olzle. Binary Component Adaptation. In Eric Jul, editor,Proceedings
ECOOP’98. Springer, 1998.

[KLM +97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. Technical report, Xerox
Palo Alto Research Center, 1997.

[LB98] Sheng Lian and Gilad Bracha. Dynamic Class Loading in the Java Virtual Machine. In
Proceedings OOPSLA’98, 1998.

[LY97] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. Addison-Wesley,
1997.

[LZ98] Han Bok Lee and Benjamin G. Zorn. BIT: A Tool for Instrumenting Java Bytecodes. In
Proceedings USENIX Symposium on Internet Technologies and Systems, 1998.

[MBL97] A.C. Myers, J. A. Bank, and B. Liskov. Parameterized Types for Java. InProceedings
POPL’97, Paris, France, 1997.

[MD97] J. Meyer and T. Downing.Java Virtual Machine. O’Reilly, 1997.

[Sil98] Shawn Silverman. The classfile API. University of Manitoba,
http://Meurrens.ML.org/ip-Links/java/codeEngineering/viewers.html ,
1998.

[Taf96] Tucker Taft. Programming the Internet in Ada95. InProceedings Ada-Europe International
Conference on Reliable Software Technologies, 1996.

[TK98] M. Thies and U. Kastens. Statische Analyse von Bibliotheken als Grundlage dynamischer
Optimierung. In Clemens Cap, editor,Proceedings JIT’98. Springer, 1998.

[You98] Matt T. Yourst. Inside Java Class Files. Laserstars Technologies,
http://www.laserstars.com/articles/ddj/insidejcf/ , 1998.

23

http://www.cs.uni-bonn.de/~costanza/ClassFilters/
http://java.sun.com/products/jdk/1.1/docs/guide/reflection/
http://Meurrens.ML.org/ip-Links/java/codeEngineering/viewers.html
http://www.laserstars.com/articles/ddj/insidejcf/


A Code examples for the ClassGen API

A.1 HelloWorldBuilder.java

The following Java program reads a name from the standard input and prints a friendly “Hello”. Since the
readLine() method may throw anIOException it is enclosed by atry-catch block.

import java.io.*;

public class HelloWorld {
public static void main(String[] argv) {

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

String name = null;

try {
System.out.print("Please enter your name> ");
name = in.readLine();

} catch(IOException e) { return; }

System.out.println("Hello, " + name);
}

}

A.2 HelloWorldBuilder.java

We will sketch here how the above Java class can be created from the scratch using theBCEL API. For
ease of reading we will use textual signatures and not create them dynamically. For example, the signature

"(Ljava/lang/String;)Ljava/lang/StringBuffer;"

would actually be created with

Type.getMethodSignature(Type.STRINGBUFFER, new Type[] { Type.STRING });

A.2.1 Initialization:

First we create an empty class and an instruction list:

ClassGen cg = new ClassGen("HelloWorld", "java.lang.Object",
"<generated>", ACC_PUBLIC | ACC_SUPER,
null);

ConstantPoolGen cp = cg.getConstantPool(); // cg creates constant pool
InstructionList il = new InstructionList();



We then create the main method, supplying the method’s name and the symbolic type signature en-
coded withType objects.

MethodGen mg = new MethodGen(ACC_STATIC | ACC_PUBLIC,// access flags
Type.VOID, // return type
new Type[] { // argument types

new ArrayType(Type.STRING, 1) },
new String[] { "argv" }, // arg names
"main", "HelloWorld", // method, class
il, cp);

InstructionFactory factory = new InstructionFactory(cg);

We define some often use types:

ObjectType i_stream = new ObjectType("java.io.InputStream");
ObjectType p_stream = new ObjectType("java.io.PrintStream");

A.2.2 Create variablesin and name:

We call the constructors, i.e. executeBufferedReader(InputStreamReader(System.in)) .
The reference to theBufferedReader object stays on top of the stack and is stored in the newly
allocatedin variable.

il.append(factory.createNew("java.io.BufferedReader"));
il.append(InstructionConstants.DUP); // Use predefined constant
il.append(factory.createNew("java.io.InputStreamReader"));
il.append(InstructionConstants.DUP);
il.append(factory.createFieldAccess("java.lang.System", "in", i_stream,

Constants.GETSTATIC));
il.append(factory.createInvoke("java.io.InputStreamReader", "<init>",

Type.VOID, new Type[] { i_stream },
Constants.INVOKESPECIAL));

il.append(factory.createInvoke("java.io.BufferedReader", "<init>", Type.VOID,
new Type[] {new ObjectType("java.io.Reader")},
Constants.INVOKESPECIAL));

LocalVariableGen lg =
mg.addLocalVariable("in",

new ObjectType("java.io.BufferedReader"), null, null);
int in = lg.getIndex();
lg.setStart(il.append(new ASTORE(in))); // ‘i’ valid from here

Create local variablenameand initialize it tonull .

lg = mg.addLocalVariable("name", Type.STRING, null, null);
int name = lg.getIndex();
il.append(InstructionConstants.ACONST_NULL);
lg.setStart(il.append(new ASTORE(name))); // ‘name’ valid from here



A.2.3 Create try-catch block

We remember the start of the block, read a line from the standard input and store it into the variablename.

InstructionHandle try_start =
il.append(factory.createFieldAccess("java.lang.System", "out", p_stream,

Constants.GETSTATIC));

il.append(new PUSH(cp, "Please enter your name> "));
il.append(factory.createInvoke("java.io.PrintStream", "print", Type.VOID,

new Type[] { Type.STRING },
Constants.INVOKEVIRTUAL));

il.append(new ALOAD(in));
il.append(factory.createInvoke("java.io.BufferedReader", "readLine",

Type.STRING, Type.NO_ARGS,
Constants.INVOKEVIRTUAL));

il.append(new ASTORE(name));

Upon normal execution we jump behind exception handler, the target address is not known yet.

GOTO g = new GOTO(null);
InstructionHandle try_end = il.append(g);

We add the exception handler which simply returns from the method.

InstructionHandle handler = il.append(InstructionConstants.RETURN);
mg.addExceptionHandler(try_start, try_end, handler, "java.io.IOException");

“Normal” code continues, now we can set the branch target of the GOTO.

InstructionHandle ih =
il.append(factory.createFieldAccess("java.lang.System", "out", p_stream,

Constants.GETSTATIC));
g.setTarget(ih);

A.2.4 Printing ”Hello”

String concatenation compiles toStringBuffer operations.

il.append(factory.createNew(Type.STRINGBUFFER));
il.append(InstructionConstants.DUP);
il.append(new PUSH(cp, "Hello, "));
il.append(factory.createInvoke("java.lang.StringBuffer", "<init>",

Type.VOID, new Type[] { Type.STRING },
Constants.INVOKESPECIAL));

il.append(new ALOAD(name));
il.append(factory.createInvoke("java.lang.StringBuffer", "append",



Type.STRINGBUFFER, new Type[] { Type.STRING },
Constants.INVOKEVIRTUAL));

il.append(factory.createInvoke("java.lang.StringBuffer", "toString",
Type.STRING, Type.NO_ARGS,
Constants.INVOKEVIRTUAL));

il.append(factory.createInvoke("java.io.PrintStream", "println",
Type.VOID, new Type[] { Type.STRING },
Constants.INVOKEVIRTUAL));

il.append(InstructionConstants.RETURN);

A.2.5 Finalization

Finally, we have to set the stack size, which normally would be computed on the fly and add a default
constructor method to the class, which is empty in this case.

mg.setMaxStack(5);
cg.addMethod(mg.getMethod());
il.dispose(); // Allow instruction handles to be reused
cg.addEmptyConstructor(ACC_PUBLIC);

Last but not least we dump theJavaClass object to a file.

try {
cg.getJavaClass().dump("HelloWorld.class");

} catch(java.io.IOException e) { System.err.println(e); }

A.3 Peephole.java

This class implements a simple peephole optimizer that removes any NOP instructions from the given
class.

import java.io.*;
import de.fub.bytecode.classfile.*;
import de.fub.bytecode.generic.*;
import de.fub.bytecode.Repository;

public class Peephole {
public static void main(String[] argv) {

try {
/* Load the class from CLASSPATH.

*/
JavaClass clazz = Repository.lookupClass(argv[0]);
Method[] methods = clazz.getMethods();
ConstantPoolGen cp = new ConstantPoolGen(clazz.getConstantPool());



for(int i=0; i < methods.length; i++) {
MethodGen mg = new MethodGen(methods[i],

clazz.getClassName(), cp);
Method stripped = removeNOPs(mg);

if(stripped != null) // Any NOPs stripped?
methods[i] = stripped; // Overwrite with stripped method

}

/* Dump the class to <class name>_.class
*/

clazz.setConstantPool(cp.getFinalConstantPool());
clazz.dump(clazz.getClassName() + "_.class");

} catch(Exception e) { e.printStackTrace(); }
}

private static final Method removeNOPs(MethodGen mg) {
InstructionList il = mg.getInstructionList();
FindPattern f = new FindPattern(il);
String pat = "(‘NOP’)+"; // Find at least one NOP
InstructionHandle next = null;
int count = 0;

for(InstructionHandle ih = f.search(pat); // Search with regular expression
ih != null;
ih = f.search(pat, next)) {

InstructionHandle[] match = f.getMatch();
InstructionHandle first = match[0];
InstructionHandle last = match[match.length - 1];

/* Some nasty Java compilers may add NOP at end of method.
*/

if((next = last.getNext()) == null)
break;

count += match.length;

/* Delete NOPs and redirect any references to them to the following
* (non-nop) instruction.
*/

try {
il.delete(first, last);

} catch(TargetLostException e) {
InstructionHandle[] targets = e.getTargets();



for(int i=0; i < targets.length; i++) {
InstructionTargeter[] targeters = targets[i].getTargeters();

for(int j=0; j < targeters.length; j++)
targeters[j].updateTarget(targets[i], next);

}
}

}

Method m = null;

if(count > 0) {
System.out.println("Removed " + count + " NOP instructions from method " +

mg.getName());
m = mg.getMethod();

}

il.dispose(); // Reuse instruction handles
return m;

}
}
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